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第 1章 第一次习题课

1.1 作业题

练习 1.1 (P61, 2)

♣

当 a为何值时，下列线性方程组有解？有解时求出它的通解。

(1)


3x1 + 2x2 + x3 = 2,

x1 − x2 − 2x3 = −3,

ax1 − 2x2 + 2x3 = 6.

解 
3 2 1 2

1 −1 −2 −3
a −2 2 6

 r1↔r2−−−−→


1 −1 −2 −3
3 2 1 2

a −2 2 6



−3r1→r2, −ar1→r3−−−−−−−−−−−−−−→


1 −1 −2 −3
0 5 7 11

0 −2 + a 2 + 2a 6 + 3a


2−a
5 r2→r3−−−−−−−→


1 −1 −2 −3
0 5 7 11

0 0 24+3a
5

52+4a
5


当 24 + 3a = 0即 a = −8时，无解。
所以当 a 6= −8时，方程有解。 

x1 = 4
a+8 ,

x2 = a−20
24+8a ,

x3 = 52+4a
24+8a

或者本题直接使用消元法解。

练习 1.2 (P61, 5)

♣

求三次多项式 f(x) = ax3 + bx2 + cx+ d满足

f(0) = 1, f(1) = 2, f ′(0) = 1, f ′(1) = −1.

解 

f(0) = d = 1,

f(1) = a+ b+ c+ d = 2,

f ′(0) = c = 1,

f ′(1) = 3a+ 2b+ c = −1.

解得：a = −2, b = 2, c = 1, d = 1.



1.1 作业题

练习 1.3 (P127,5)

♣

计算

(
x1 x2 · · · xm

)


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn




y1

y2
...

yn

 .

解

(
x1 x2 · · · xm

)


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn




y1

y2
...

yn



=
(
x1 x2 · · · xm

)


n∑
j=1

a1jyj

n∑
j=1

a2jyj

...
n∑

j=1

amjyj


=

m∑
i=1

xi

n∑
j=1

aijyj

=

m∑
i=1

n∑
j=1

aijxiyj .

练习 1.4 (P128,6(2))

♣

举例求满足条件的 2阶实方阵 A。

(2) A2 =

(
0 1

−1 0

)

解

直接设 A =

(
a b

c d

)
，

解得：A2 =

(
a2 + bc ab+ bd

ac+ cd bc+ d2

)
=

(
0 1

−1 0

)
.

则有解为

A =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
,或A =

(
−
√
2
2 −

√
2
2√

2
2 −

√
2
2

)
.

�
笔记更简单的做法：观察到 A2 是一个旋转阵。

2



1.1 作业题

练习 1.5 (P128,7)

♣

计算下列方阵的 k次方幂，k为正整数。

(1)

(
cos θ sin θ

− sin θ cos θ

)
(4)


a 1

a
. . .

. . . 1

a

 (6)


a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn
...

...
. . .

...

anb1 anb2 · · · anbn



解 [1]

旋转矩阵，显然 k次幂是

(
cos kθ sin kθ

− sin kθ cos kθ

)
.

解 [4]记 A =


a 1

a
. . .

. . . 1

a

.则有：

A = diag(a, a, · · · , a) +


0 1

0
. . .

. . . 1

0

 = aI + J.

对矩阵 J，注意到：

J2 =



0 0 1

0 0
. . .

. . .
. . . 1

. . . 0

0


, J3 =



0 0 0 1

0 0 0
. . .

. . .
. . .

. . . 1

. . .
. . . 0

0 0

0


更一般地，可以归纳得到：

Jk =



0 0 · · · 0 1

0 0 · · · 0
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0

0 0

0


其中，在 Jk 中，主对角线右上方第 k条对角线上全为 1，其他元素为 0。
特别地，当 k = n时，有：

Jn = 0n×n.

这说明矩阵 J 是一个幂零矩阵，其指数不超过 n.
对 A = aI + J，我们可以利用多项式展开来计算 Ak：
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1.1 作业题

Ak = (aI + J)k =

k∑
m=0

(
k

m

)
ak−mJm.

由于 Jn = 0，所以当m ≥ n时，Jm = 0。因此，求和式可以简化为：

Ak =

min(k,n−1)∑
m=0

(
k

m

)
ak−mJm.

写成矩阵形式：

Ak =



ak
(
k
1

)
ak−1

(
k
2

)
ak−2 · · ·

(
k

n−1
)
ak−n+1

0 ak
(
k
1

)
ak−1 · · ·

(
k

n−2
)
ak−n+2

0 0 ak · · ·
(

k
n−3
)
ak−n+3

...
...

...
. . .

...

0 0 0 · · · ak


, k ≥ n.

Ak =



ak
(
k
1

)
ak−1 · · ·

(
k
k

)
· · · 0

0 ak · · ·
(

k
k−1
)
a

. . . 0
...

...
. . .

...
. . .

(
k
k

)
0 0 · · · ak

(
k

k−1
)
a

...
...

. . .
...

. . .
...

0 0 · · · 0 · · · ak


, k < n

�
笔记 J 矩阵是一类很特殊的矩阵，n次幂零，且幂次加一，所有元素向右上方挪一位。
解 [6]记

A =


a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn
...

...
. . .

...

anb1 anb2 · · · anbn

 =


a1

a2
...

an


(
b1 b2 · · · bn

)
= abT

且有：

bTa =
(
b1 b2 · · · bn

)

a1

a2
...

an

 =

n∑
i=1

biai.

因此，

Ak = (abT)k = [a(bTa · · ·bTa)bT]

= a(

n∑
i=1

biai)
kbT

= (

n∑
i=1

biai)
kA.
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1.2 补充练习

练习 1.6 (P128,8(2))

♣

对下面的多项式 f(x)和方阵 A，求 f(A)：

(2) f(x) = x2 − 4x+ 4, A =


2 1 1

0 2 1

0 0 1

 .

解

f(A) = A2 − 4A+ 4I (1.1)

=


4 4 4

0 4 3

0 0 1

− 4


2 1 1

0 2 1

0 0 1

+ 4I (1.2)

=


0 0 0

0 0 −1
0 0 1

 . (1.3)

练习 1.7 (P128, 12)

♣证明：与任意 n阶方阵都乘法可交换的方阵一定是数量矩阵。

证明 不妨设 A与任意 n阶方阵乘法可交换。记 A = (aij)n×n，Eii :=除了第 (i, i)个元素其他均为 0的矩阵.则
由 A乘法可交换，有：

AEii = EiiA

0 · · · 0 a1i · · · 0
...

...
...

...
...

0 · · · 0 aii · · · 0
...

...
...

...
...

0 · · · 0 ani · · · 0


=



0 · · · 0 · · · 0
...

...
...

ai1 · · · aii · · · ain
...

...
...

0 · · · 0 · · · 0


.

其中，左式矩阵第 i列非零，右式第 j列非零。则显然，aij = 0, i 6= j.
再证 aii = ajj , i 6= j. 考虑

B =


1 1 · · · 1

1 1 · · · 1
...

...
...

1 1 · · · 1


则由 AB = BA, A = diag(a11, a22, · · · , ann),

AB =


a11 a11 · · · a11

a22 a22 · · · a22
...

...
...

ann ann · · · ann

 =


a11 a22 · · · ann

a11 a22 · · · ann
...

...
...

a11 a22 · · · ann

 = BA

因此，a11 = a22 = · · · = ann. A是数量阵。
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1.2 补充练习

1.2 补充练习

练习 1.8

♣

A =


1 1 1 0

0 1 1 1

0 0 1 1

0 0 0 1

 ,求 An.

解定义矩阵 N：

N =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


则有：

N2 =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 , N3 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 , N4 = 0

由于 A可以分解为：
A = I +N +N2

我们计算 An：
An = (I +N +N2)n

利用二项展开式：

An = I +

(
n

1

)
(N +N2) +

(
n

2

)
(N +N2)2 + · · ·+

(
n

n

)
(N +N2)n

= I +

(
n

1

)
(N +N2) +

(
n

2

)
(N +N2)2 +

(
n

3

)
(N +N2)3

由于 N4 = 0，所以：
(N +N2)2 = N2 + 2N3

(N +N2)3 = N3

因此：
An = I + nN +

n(n− 1)

2
N2 +

n(n− 1)(n− 2)

6
N3

练习 1.9

♣

A =

(
1 1

0 1

)
,计算 eA, sinA, cosA。

定义矩阵极限：

A = (aij)m×n, Ak = (a
(k)
ij )m×n, k = 1, 2, . . .
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1.2 补充练习

如果 limk→∞Ak = A,则有 limk→∞ a
(k)
ij = aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

计算 eA:

eA = lim
k→∞

∞∑
k=0

Ak

k!

计算 Ak =

(
1 k

0 1

)
：

因此，矩阵指数的展开式为：

eA =

∞∑
k=0

Ak

k!
=

(∑∞
k=0

1
k!

∑∞
k=0

k
k!

0
∑∞

k=0
1
k!

)
我们知道：

∞∑
k=0

1

k!
= e,

∞∑
k=0

k

k!
= e.

因此：

eA =

(
e e

0 e

)
.

sinA, cosA类似计算。

练习 1.10

♣

记

A =


0 1 0

0 0 1

1 0 0

 ,

求矩阵 A2024。

解计算 A3：
A3 = I.

由于 A3 = I，可以将 2024次方指数分解：

2024 = 3q + 2, (其中 q为正整数)

因此：
A2024 = (A3)qA2 = IqA2 = A2.

计算 A2：

A2 =


0 0 1

1 0 0

0 1 0

 .

所以：

A2024 =


0 0 1

1 0 0

0 1 0

 .

�
笔记可以思考一下这种形状的矩阵有什么性质。
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1.2 补充练习

练习 1.11

♣

如果 AB = BA，就称矩阵 B 与 A可交换。分别求与下列 A可交换的全部方阵。

(1) A =

(
1 1

0 1

)
; (2) A =


3 0 0

0 2 0

0 0 5

 ; (3) A =


0 1 0

0 0 1

0 0 0


解 [1]设 B = (bij)2×2 是 2阶方阵，则

AB = BA⇐⇒ AB −B = BA−B ⇐⇒ (A− I)B = B(A− I).

而

(A− I)B =

(
0 1

0 0

)(
b11 b12

b21 b22

)
=

(
b21 b22

0 0

)
,

B(A− I) =

(
b11 b12

b21 b22

)(
0 1

0 0

)
=

(
0 b11

0 b21

)
.

由此得：

b21 = 0, b11 = b22

=⇒ B =

(
b1 b2

0 b1

)
= b1I + b2(A− I).

解 [2]设 A = diag(λ1, λ2, λ3)是对角矩阵，其中 λ1 = 3, λ2 = 2, λ3 = 5两两不同。
设 B = (bij)3×3 是 3阶方阵，则 AB 与 BA的 (i, j)元分别为 λibij 与 bijλj，即

AB = BA⇐⇒ λibij = bijλj , (1 ≤ i, j ≤ 3)

=⇒ (λi − λj)bij = 0, (1 ≤ i, j ≤ 3).

由于 λi 6= λj (当 i 6= j)，可得：

bij = 0, (∀λi − λj 6= 0即i 6= j).

即 B 是对角矩阵：

B = diag(b11, b22, b33).

解 [3]设 B = (bij)3×3 是 3阶方阵，则

AB =


b21 b22 b23

b31 b32 b33

0 0 0

 , BA =


0 b11 b12

0 b21 b22

0 b31 b32

 .

由于 AB = BA，可得：
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1.2 补充练习

b21 = b31 = b32 = 0, b11 = b22 = b33, b12 = b23

=⇒ B =


b1 b2 b3

0 b1 b2

0 0 b1

 .

= b1I + b2A+ b3A
2.

�
笔记我们是否可以得出这样的结论：一个矩阵可以写成另外一个矩阵的多项式 =⇒这两个矩阵乘法可交换？

进一步的，是否有：可以写成同一个矩阵的多项式的两个矩阵乘法可交换？
答案是肯定的。简单验证即可证明。这个性质本身是 trivial的，但是我们可以利用这条来证明其他东西。

练习 1.12

♣

设 n ≥ 2. 是否存在一个方阵 A ∈ Fn×n，使得 Fn×n 中所有的方阵都可以写成 A的多项式的形式

a0I + a1A+ · · ·+ amAm

其中m为任意正整数，a0, a1, . . . , am ∈ F？并说明理由。

解不存在这样的方阵 A。
如果存在这样的 A，则任意两个方阵 B1, B2 都可以分别写成 A的两个多项式：

B1 = f1(A), B2 = f2(A).

因此，B1, B2 可交换，即：
B1B2 = B2B1.

但当 n ≥ 2时，Fn×n 中存在不可交换的方阵。例如，基本矩阵 E11, E12 不可交换,

E11E12 6= E12E11.

它们就不能写成同一个方阵 A的多项式。
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第 2章 第二次习题课

2.1 作业题

练习 2.1 (P128, 9)

♣设 A为 n阶实对称方阵且 A2 = O，证明：A = O

证明 考虑 B = A2 的第 i行 j 列元素：

bij =

n∑
k=1

aikakj

当 i = j 时，注意到 A是实对称矩阵有：

bii =

n∑
k=1

aikaki =

n∑
k=1

a2ik = 0

从而有：
aik = 0 ∀ k

此时由 i和 k的任意性即有：A = O�
笔记我们注意到一些同学有特征值和正交相似的结论做这道题

这里埋一个伏笔,学到这些知识的时候我们可以返回来看这道题

练习 2.2 (P128, 10)

♣设 AB 都是 n阶对称方阵，且 AB = BA证明 AB 也是对称方阵

证明 方法一：展开：记 C = AB 和 D = (AB)T

cij =

n∑
k=1

aikbkj =

n∑
k=1

bikakj =

n∑
k=1

bkiajk = dij

方法二：用转置的性质：
(AB)T = BTAT = BA = AB

�
笔记多个矩阵相乘之后一起取转置的结果已经在本章的第 18题剧透过了，这道题将作为本次的补充题

练习 2.3 (P128,15)

♣
设方阵 A满足 Ak = O，k为正整数. 证明:I +A可逆，并求 (I +A)−1.

证明 思路就是可逆性的定义，我们希望找一个 B 使得 (I −A)B = I

I = I − (−A)k = [I − (−A)][

k−1∑
i=0

(−A)i]

这里就可以使用可逆性的定义了，I +A可逆，且有：

(I +A)−1 =

k−1∑
i=0

(−A)i

�
笔记一些同学尝试用 det(I +A) 6= 0的方法来证明，但是注意一下：

一般情况下 det(A) + det(B) 6= det(A+B)。
在批改中我也给出了反例：A = B = I 时：

LHS = 2 6= 2n = det(2I) = RHS



2.1 作业题

练习 2.4 (P128,16)

♣

设方阵 A满足：
I − 2A− 3A2 + 4A3 + 5A4 − 6A5 = O

证明:I −A可逆，并求 (I −A)−1.

解
思路是类似的注意到：

I = 2I − 2A− 3A2 + 4A3 + 5A4 − 6A5

这里对右侧分解出来一个 I −A即有：

I = (I −A)(2I − 3A2 +A3 + 6A4)

从而 I −A可逆，且 (I −A)−1 = 2I − 3A2 +A3 + 6A4

练习 2.5 (P129,19)

♣求所有满足 A2 = O, B2 = I C̄TC = I 的 2阶复方阵 A、B、C.

解设 A =

(
a b

c d

)
（后面两问设法相同），

[A]解得：A2 =

(
a2 + bc ab+ bd

ac+ cd bc+ d2

)
=

(
0 0

0 0

)
.

若 bc 6= 0，则 a+ d = 0

解得：A =

(
a b

c −a

)
(bc+ a2 = 0)

若 bc = 0，则一定有 a = d = 0，归入情况一
从而通解为：

A =

(
a b

c −a

)
(bc+ a2 = 0)

[B]解得：B2 =

(
a2 + bc ab+ bd

ac+ cd bc+ d2

)
=

(
1 0

0 1

)
.

若 bc 6= 0，则 a+ d = 0

解得：B =

(
a b

c −a

)
(bc+ a2 = 1)

若 bc = 0，则一定有 a2 = d2 = 1，a = −d的情况已经讨论过了
a = d时则有 b = c = 0，B = I 或 B = −I
从而通解为：

B =

(
a b

c −a

)
(bc+ a2 = 1)或

(
1 0

0 1

)
或

(
−1 0

0 −1

)

[C]我们考虑复数的指数形式 r = |r|eiθ

解得：C̄TC =

(
|a|2 + |c|2 āb+ c̄d

ab̄+ cd̄ |b|2 + |d|2

)
=

(
1 0

0 1

)
.

记 |a| = r，则 |c| =
√
1− r2.同时记 |d| = r′, |b| =

√
1− (r′)2

结合 ab̄+ cd̄ = 0，有 |ab| = |cd|，解得：r = r′

记 a = reiθ1 , b =
√
1− r2eiθ2 , c =

√
1− r2eiθ3 代入到 ab̄+ cd̄ = 0解得：d = −rei(θ3+θ2−θ1)

11



2.1 作业题

从而本题的通解为：

C =

(
reiθ1

√
1− r2eiθ2

√
1− r2eiθ3 −rei(θ3+θ2−θ1)

)

练习 2.6 (P129, 20)

♣证明：不存在 n阶复方阵 A，B 满足 AB −BA = In

证明 回忆课堂上讲 Trace的时候的性质，有一条不太起眼的：tr(AB) = tr(BA).
若存在 n阶复方阵 A，B 满足 AB −BA = In，两边取 Trace：

tr(AB −BA) = tr(AB)− tr(BA) = 0 6= n = tr(In)

矛盾，从而不存在

练习 2.7 (P85, 1)

♣

计算下列矩阵的行列式：

(1)


1 0 1 −4
−1 −3 0 −2
2 1 4 0

0 3 −3 2

 (3)


x+ a x+ b x+ c

y + a y + b y + c

z + a z + b z + c

 (4)


a1n

a2,n−1 a2,n
...

an1 an2 · · · ann


解 [1]

det


1 0 1 −4
−1 −3 0 −2
2 −1 4 0

0 3 −3 2

 r1→r2========
−2r1→r3

det


1 0 1 −4
0 −3 1 −6
0 −1 2 8

0 3 −3 2



1
3 r2→r3

=======
r2→r4

det


1 0 1 −4
0 −3 1 −6
0 0 5

3 10

0 0 −2 −4


6
5 r3→r4

======= det


1 0 1 −4
0 −3 1 −6
0 0 5

3 10

0 0 0 8

 = −40

[3]

det


x+ a x+ b x+ c

y + a y + b y + c

z + a z + b z + c

 −r1→r2=======
−r1→r3

det


x+ a x+ b x+ c

y − x y − x y − x

z − x z − x z − x



= (y − x)(z − x)det


x+ a x+ b x+ c

1 1 1

1 1 1

 = 0

[4]

det


a1n

a2,n−1 a2,n
...

an1 an2 · · · ann

 = (−1)n+1 det


a2,n−1

a3,n−2 a3,n−1
...

an1 an2 · · · an,n−1

 = (−1)
n(n+1)

2

n∏
j=1

aj,n−j+1

12



2.1 作业题

练习 2.8 (P85, 3)

♣
A为 n阶方阵，λ为常数，证明：det(λA) = λndet(A)

解记 A = (a⃗1, a⃗2 · · · a⃗n)，则：λA = (λa⃗1, λa⃗2 · · ·λa⃗n)

det(λA) = λdet(a⃗1, λa⃗2 · · ·λa⃗n) = λ2det(a⃗1, a⃗2 · · ·λa⃗n) = · · ·λndet(a⃗1, a⃗2 · · · a⃗n) = λndet(A)

练习 2.9 (P85, 4)

♣方阵 A称为反对称方阵，如果它的转置方阵等于 −A，证明：奇数阶反对称方阵的行列式为 0

解记 A为一个 2n+ 1维的反对称方阵：

det(A) = det(AT ) = det(−A) = (−1)2n+1det(A) = −det(A)

从而一定有：det(A) = 0

练习 2.10 (P85, 5)

♣

证明： ∣∣∣∣∣a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

∣∣∣∣∣ =
∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣
∣∣∣∣∣b11 b12

b21 b22

∣∣∣∣∣
解记：

A =

(
a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
则：

LHS = det(AB) = det(A)det(B) = RHS

�
笔记鉴于老师上课讲到了 det(AB) = det(A)det(B)，这里我并没有给用这个方法的人批错。

补充习题出有这个等式的证明，或者可以看书本 P100的定理 4.2.3

练习 2.11 (P86, 7)

♣
设 a⃗, b⃗, c⃗, d⃗为 4维数组向量. 证明：det(2a⃗− b⃗,−a⃗+ 2⃗b− c⃗,−b⃗+ 2c⃗− d⃗,−c⃗+ 2d⃗) = 5det(⃗a, b⃗, c⃗, d⃗)

解不妨设 a = (a1, a2, a3, a4), b, c, d同理，并记：

A =


a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

 , B =


2 −1 0 0

−1 2 −1 0

0 −1 2 −1
0 0 −1 2


则：

LHS = det(BA) = det(B)det(A) = RHS

练习 2.12 (P86, 11)

♣

求以下排列的逆序数，并指出其奇偶性:

(2)(6, 4, 2, 1, 9, 7, 3, 5, 8)

解形如 (6, X)的逆序对 5个，
(4, X)的逆序对 3个，
(2, X)的逆序对 1个，

13



2.2 补充练习

(9, X)的逆序对 4个，
(7, X)的逆序对 2个，
合计 15个，为奇排列

2.2 补充练习

练习 2.13 (P128,18)

♣
证明：(A1A2 · · ·Ak)

T = AT
k · · ·AT

2 A
T
1 .（假设其中的矩阵乘法有意义）

证明 k = 2的情景需要直接计算验证：记 A = (aij)m∗n为一个m ∗ n的矩阵，B = (bij)n∗p为一个 n ∗ p的矩阵.
同时记 C = AB 和 D = BTAT .

cij =

n∑
k=1

aikbkjdji =

n∑
k=1

bkjaik

若 k ≤ n的情况已经成立，k = n+ 1时：记 A
′
= A1A2 · · ·An，此时：

(A1A2 · · ·An+1)
T = (A

′
An+1)

T = AT
n+1(A

′
)T = AT

n+1A
T
n · · ·AT

2 A
T
1

练习 2.14 (P129 21)

♣

证明：可逆上（下）三角、准对角、对称、反对称方阵的逆矩阵仍然分别是上（下）三角、准对角、对称、
反对称的.
（P.S. A称为准对角矩阵，是指其可以被表达为 A = diag(A1A2 · · ·Ak)的形式，其中 A1 −Ak 均为矩阵）

证明 我们先从上三角开始证明：设 A为可逆上三角矩阵，证明 B = A−1 也是上三角的.
法一：设 A = (aij)n∗n 和 B = (bij)n∗n，则：aij = 0 (i > j)和 aii 6= 0，且有：

n∑
k=1

aikbkj = δij

特别取 i = n, j < n，此时只剩下 annbnj = 0，结合 ann 6= 0就有 bnj = 0

如果我们已经证明 bij = 0 (i < j;m+ 1 ≤ i ≤ n)，这时转而关注 amj (1 ≤ j ≤ m− 1)

取 i = m, j < i，等式为
∑n

k=m amkbkj = 0，这 n−m+1项的后 n−m项，由已有结论：bkj = 0(j < m 6= k).
从而只剩下一项 ammbmj = 0，但 amm 6= 0，则 bmj = 0 (j < m)

由数学归纳法可证得：bij = 0 (i > j)

法二：n = 1时，A = (a)的逆即为 A−1 = ( 1a )显然也是上三角的
若 n ≤ k时结论已成立，考虑 k + 1维矩阵:

A =

(
Ak∗k (α⃗)T

0⃗ ak+1

)
和B =

(
Bk∗k (β⃗1)

T

β⃗2 bk+1

)
则： 

Ak∗kBk∗k = Ik

ak+1bk+1 = 1

Ak∗k(β⃗1)
T + (α⃗)T bk+1 = 0⃗

0⃗Bk∗k + ak+1β⃗2 = (⃗0)T

14



2.2 补充练习

可解得： 

Bk∗k = (Ak∗k)
−1

bk+1 = (ak+1)
−1

(β⃗1)
T = −(Ak∗k)

−1(α⃗)T bk+1

β⃗2 = 0⃗

由数学归纳法即得证
下三角：A 为可逆下三角矩阵 ⇐⇒ AT 为可逆上三角矩阵 ⇐⇒ (A−1)T = (AT )−1 为可逆上三角矩阵 ⇐⇒

A−1 为可逆下三角矩阵
对称：

(A−1)T = (AT )−1 = A−1

反对称：
(A−1)T = (AT )−1 = (−A)−1 = −A−1

准对角：设 A = diag(A1A2 · · ·Ak)为可逆准对角矩阵，证明 B = A−1 也是准对角的.
设 B = (Bij)k∗k，则有：

AiBij = Iij

这里 Iij 代指单位阵对应的分块.
解得：Bii = (Ai)

−1 和 Bij = 0 (i 6= j)，这说明 B = diag(A−11 A−12 · · ·A
−1
k )是准对角的�

笔记翻看了书本定义，准对角矩阵的对角元可以不是方阵，但本题可以通过对角矩阵的可逆性证明对角元上的
一定为方阵

练习 2.15 (P86 12)

♣证明：任意一个排列经过一次对换之后，必改变其奇偶性.

证明 设一个排列为 (a1a2 · · · an)，对换元素 ai, aj (i < j)

若 j = i+ 1，则其他逆序对不发生改变，但 (ai, aj)和 (aj , ai)一定恰有一个是逆序对，从而逆序对的数量
变化为 1或-1，改变了排列的奇偶性

一般情况下，对换 ai 和 aj 的操作可以由以下的方式实现：

(a1a2 · · · aiai+1 · · · aj−1aj · · · an)→ (a1a2 · · · ai+1ai · · · aj−1aj · · · an)→ ...

→ (a1a2 · · · ai−1ai+1 · · · ajai · · · an)→ (a1a2 · · · ai−1ai+1 · · · aj−1ajai · · · an)→ ...

→ (a1a2 · · · ai−1ajai+1 · · · aj−1ai · · · an)

一共经历了 2(j − i)− 1次相邻对换，自然改变了排列的奇偶性

练习 2.16 (P86 13)

♣
证明：对 n ≥ 2，所有 n元排列中，奇排列和偶排列个数均为 n!

2

证明 设一个偶排列为 (a1a2 · · · an)，对换元素 a1, a2 得到的排列 (a2a1 · · · an)显然是奇排列.
易见不同的偶排列 σi, σj 经过这样的对换得到的奇排列不同，从而奇排列数量不少于偶排列数量.
同理，偶排列数量不少于奇排列数量，从而两者数量相等，又总的排列一共 n!个，那么奇排列和偶排列个

数均为 n!
2

15



2.2 补充练习

练习 2.17

♣

证明：对 k个 n阶方阵 A1A2 · · ·Ak，有：

det(A1A2 · · ·Ak) =
k∏

i=1

det(Ai)

证明 k = 2 :设 A = (aij), B = (βi)，则：

det(AB) = det(
∑
i1

a1,i1βi1 ,
∑

_i2a2,i2βi2 , · · · ,
∑
in

an,in)

由行列式的性质，每一行中的 Σ记号可以被提出来，即：

原式 =
∑
i1

∑
i2

· · ·
∑
in

n∏
k=1

ak,ikdet(βi1 , βi2 , · · · , βin)

这里为了使得 det(βi1 , βi2 , · · · , βin)不为 0，一定需要使得 i1, i2, · · · , in 两两不同，那么

原式 =
∑

(i1,i2,··· ,in)=(1,2,··· ,n)

(−1)τ(i1,i2,··· ,in)
n∏

k=1

ak,ikdet(β1, β2, · · · , βn)

而
∑

(i1,i2,··· ,in)=(1,2,··· ,n)

(−1)τ(i1,i2,··· ,in)
n∏

k=1

ak,ik = det(A); det(β1, β2, · · · , βn) = det(B)

k 6= n已成立，k = n+ 1：

det(

k+1∏
i=1

Ai) = det(

k∏
i=1

Ai)det(Ak+1) =

k+1∏
i=1

det(Ai)

练习 2.18

♣

求解 V andermonde行列式：

∆n =

∣∣∣∣∣∣∣∣∣∣∣

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2

...
...

. . .
. . .

...

1 xn x2
n · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣
解首先我们给出结论：∆n =

∏
i>j(xi − xj)

证明一：n = 2的情况较为显然。
若 n ≤ k− 1维时结论成立，n =维时：按照 i = k− 1, · · · , 2, 1的顺序，依次将第 i列的−x1倍加至第 i+1

列：

原行列式 =

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0

1 x2 − x1 x2
2 − x1x2 · · · xk−1

2 − x1x
k−2
2

...
...

. . .
. . .

...

1 xk − x1 x2
k − x1xk · · · xk−1

k − x1x
k−2
k

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

x2 − x1 x2
2 − x1x2 · · · xk−1

2 − x1x
k−2
2

x3 − x1 x2
3 − x1x3 · · · xk−1

3 − x1x
k−2
3

...
...

. . .
...

xk − x1 x2
k − x1xk · · · xk−1

k − x1x
k−2
k

∣∣∣∣∣∣∣∣∣∣∣
此时注意到第 i行元素有公因式 xi+1 − x1，将其提出：

原行列式 =

k∏
i=2

(xi − x1)

∣∣∣∣∣∣∣∣∣∣∣

1 x2 x2
2 · · · xn−1

2

1 x3 x2
3 · · · xn−1

3

...
...

. . .
. . .

...

1 xn x2
n · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣
归纳假设
=======

∏
i>j>1

(xi − xj)

k∏
i=2

(xi − x1) =
∏
i>j

(xi − xj)

较为晦涩的证明二：
可以发现：∆n 是一个关于 (x1, x2, · · · , xn)的

n(n−1)
2 次齐次多项式，设为 f(x1, x2, · · · , xn)

16



2.2 补充练习

同时，对任意的 i 6= j，若 xi = xj，则 ∆n = 0。这说明 f 有因式 (xi − xj)，结合任意性一定有：

f(x1, x2, · · · , xn) = c(x1, x2, · · · , xn)
∏
i>j

(xi − xj)

检查等式两边的次数可知，c为一常数，最后检查
∏n

i=1 x
i−1
i 的系数即有 c = 1

练习 2.19

♣

求解行列式：

(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x a a · · · a

−a x a · · · a

−a −a x
. . .

...
...

...
. . .

. . . a

−a −a · · · −a x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
; (2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a+ b a 0 · · · 0

b a+ b a · · · 0

0 b a+ b
. . .

...
...

...
. . .

. . . a

0 0 · · · b a+ b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
解 [1]记 ∆n 为此问的 n阶矩阵的行列式，那么我们有：

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a a a · · · a

−a x a · · · a

−a −a x
. . .

...
...

...
. . .

. . . a

−a −a · · · −a x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− a 0 0 · · · 0

−a x a · · · a

−a −a x
. . .

...
...

...
. . .

. . . a

−a −a · · · −a x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a a a · · · a

0 x+ a 2a · · · 2a

0 0 x+ a
. . .

...
...

...
. . .

. . . a

0 0 · · · 0 x+ a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (x− a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x a a · · · a

−a x a · · · a

−a −a x
. . .

...
...

...
. . .

. . . a

−a −a · · · −a x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n−1)∗(n−1)

= a(x+ a)n−1 + (x− a)∆n−1

同时回忆到 det(A) = det(AT )，重复上面的过程，则有 ∆n = −a(x− a)n−1 + (x+ a)∆n−1

a 6= 0时，求解这个二元一次方程组得：

∆n =
(x+ a)n + (x− a)n

2

验证到 a = 0时这个式子同样成立。
[2]同样，记 ∆n 为此问的 n阶矩阵的行列式，将行列式按照第 1行展开：

∆n = (a+ b)∆n−1 − a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b a 0 · · · 0

0 a+ b a · · · 0

0 b a+ b
. . .

...
...

...
. . .

. . . a

0 0 · · · b a+ b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n−1)∗(n−1)

= (a+ b)∆n−1 − ab∆n−2

计算低次项后有：
∆1 = a+ b; ∆2 = a2 + ab+ b2

回到递推式，它可以改写为∆n− a∆n−1 = b(∆n−1− a∆n−2).对 n ≥ 3，用∆n− a∆n−1是等比数列的结论，可
以发现 ∆n − a∆n−1 = bn−2(∆2 − a∆1) = bn

相似的，递推式可以改写为∆n− b∆n−1 = a(∆n−1− b∆n−2)，并有：∆n− b∆n−1 = an−2(∆2− b∆1) = an

17



2.2 补充练习

若 a 6= b，可解得

∆n =
an+1 − bn+1

a− b

若 a = b，同样可以解得
∆n = (n+ 1)an

练习 2.20

♣

设 a1, a2, · · · , an 为正整数，证明：n阶行列式：∣∣∣∣∣∣∣∣∣∣∣

1 a1 a21 · · · an−11

1 a2 a22 · · · an−12

...
...

...
...

...

1 an a2n · · · an−1n

∣∣∣∣∣∣∣∣∣∣∣
能被 1n−12n−2 · · · (n− 2)2(n− 1)整除.

解首先，对每个正整数 k，记 k次多项式

fk(x) = x(x− 1) · · · (x− k + 1) = xk +

k−1∑
i=1

bkix
i

按照 k = n, n− 1, · · · , 3从大到小的顺序，对每个 k将原行列式∆的第 i+ 1列 (1 ≤ k ≤ n− 2)的 bki倍加至第
k列，保持行列式值的同时 ∆变为

∆ =

∣∣∣∣∣∣∣∣∣∣∣

1 a1 f2(a1) · · · fn−1(a1)

1 a2 f2(a2) · · · fn−1(a2)
...

...
...

...
...

1 an f2(an) · · · fn−1(an)

∣∣∣∣∣∣∣∣∣∣∣
回忆到组合数的定义，可以将第 k列元素一起除以 (k − 1)! (2 ≤ k ≤ n)，这时行列式继续变为

∆ =

n−1∏
k=1

k!

∣∣∣∣∣∣∣∣∣∣∣

1 a1 C2
a1
· · · Cn−1

a1

1 a2 C2
a2
· · · Cn−1

a2

...
...

...
...

...

1 an C2
an
· · · Cn−1

an

∣∣∣∣∣∣∣∣∣∣∣
记新行列式为∆1，这时候，由于 ai均为正整数，则行列式的每个元素 Ck

ai
为整数，从而∆1也为整数，从而就

有：
∆可以被

∏n−1
k=1 k! = 1n−12n−2 · · · (n− 2)2(n− 1)整除

18



第 3章 第三次习题课

3.1 作业题

练习 3.1 (P85：1(5))

♣

计算行列式： ∣∣∣∣∣∣∣∣
a2 (a+ 1)2 (a+ 2)2

b2 (b+ 1)2 (b+ 2)2

c2 (c+ 1)2 (c+ 2)2

∣∣∣∣∣∣∣∣
解 ∣∣∣∣∣∣∣∣

a2 a2 + 2a+ 1 a2 + 4a+ 4

b2 b2 + 2b+ 1 b2 + 4b+ 4

c2 c2 + 2c+ 1 c2 + 4c+ 4

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
a2 2a+ 1 4a+ 4

b2 2b+ 1 4b+ 4

c2 2c+ 1 4c+ 4

∣∣∣∣∣∣∣∣ = 4

∣∣∣∣∣∣∣∣
a2 2a+ 1 a+ 1

b2 2b+ 1 b+ 1

c2 2c+ 1 c+ 1

∣∣∣∣∣∣∣∣ = 4

∣∣∣∣∣∣∣∣
a2 a 1

b2 b 1

c2 c 1

∣∣∣∣∣∣∣∣
计算范德蒙行列式：上述行列式可以表示为：

−4

∣∣∣∣∣∣∣∣
1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣∣∣ = −4(b− a)(c− a)(c− b)

最终结果： ∣∣∣∣∣∣∣∣
a2 (a+ 1)2 (a+ 2)2

b2 (b+ 1)2 (b+ 2)2

c2 (c+ 1)2 (c+ 2)2

∣∣∣∣∣∣∣∣ = 4(a− b)(a− c)(b− c)

练习 3.2 (P85 1(6))

♣

计算下列 5×5行列式：

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a2 0 0 0

b1 b2 0 0 0

c1 c2 c3 0 0

d1 d2 d3 d4 0

e1 e2 e3 e4 e5

∣∣∣∣∣∣∣∣∣∣∣∣∣
解解题思路与步骤：

1. 观察行列式结构这是一个下三角分块矩阵，可以划分为：

D =

∣∣∣∣∣A O

B C

∣∣∣∣∣
其中：• A为 2×2矩阵：

(
a1 a2

b1 b2

)
• C 为 3×3下三角矩阵 • O为零矩阵

2. 应用分块行列式公式对于分块矩阵，有：

D = det(A) · det(C)

3. 计算各子行列式
det(A) = a1b2 − a2b1

det(C) = c3 · d4 · e5 (下三角矩阵行列式等于对角线乘积)



3.1 作业题

4. 最终结果
D = (a1b2 − a2b1) · c3 · d4 · e5

练习 3.3 (P85 19(1))

♣

计算下列 n阶行列式： ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b1
. . . . .

.

an bn

cn dn

. .
. . . .

c1 d1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
解记该行列式为 A,对第一行展开

A = a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2 b2
. . . . .

.

an bn

cn dn

. .
. . . .

c2 d2

d1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− b1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2 b2
. . . . .

.

an bn

cn dn

. .
. . . .

c2 d2

c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= a1d1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2 b2
. . . . .

.

an bn

cn dn

. .
. . . .

c2 d2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− b1c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2 b2
. . . . .

.

an bn

cn dn

. .
. . . .

c2 d2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (a1d1 − b1c1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2 b2
. . . . .

.

an bn

cn dn

. .
. . . .

c2 d2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
重复展开第一行，我们可以得到

det =

n∏
i=1

(aidi − bici)
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3.1 作业题

练习 3.4 (P85 19(2))

♣

计算下列 n阶行列式： ∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + a1 1 1 · · · 1

1 1 + a2 1 · · · 1
...

...
. . .

. . .
...

1 1 · · · 1 + an−1 1

1 1 · · · 1 1 + an

∣∣∣∣∣∣∣∣∣∣∣∣∣
解若 ai 中有两个为 0,则行列式为 0,因为有两行全为 1

若至多有一个为 0，不妨设 a1, · · · , an−1 都不为 0，我们有：

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + a1 1 1 · · · 1

1 1 + a2 1 · · · 1
...

...
. . .

. . .
...

1 1 · · · 1 + an−1 1

1 1 · · · 1 1 + an

∣∣∣∣∣∣∣∣∣∣∣∣∣
全部行减去最后一行
=============

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 0 0 · · · −an
0 a2 0 · · · −an
...

...
. . .

. . .
...

0 0 · · · an−1 −an
1 1 · · · 1 1 + an

∣∣∣∣∣∣∣∣∣∣∣∣∣

= a1 · · · an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · −an/a1
0 1 0 · · · −an/a2
...

...
. . .

. . .
...

0 0 · · · 1 −an/an−1
1 1 · · · 1 1 + an

∣∣∣∣∣∣∣∣∣∣∣∣∣

最后一行减去前面所有行
=============== a1 · · · an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · −an/a1
0 1 0 · · · −an/a2
...

...
. . .

. . .
...

0 0 · · · 1 −an/an−1
0 0 · · · 0 1 + an + an/a1 + · · ·+ an/an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= a1 · · · an−1(1 + an + an/a1 + · · ·+ an/an−1)

若 an 不为 0，则有如下形式

(a1 · · · an)(1 +
n∑

i=1

1

ai
)

练习 3.5 (P86 16(1))

♣

用 Cramer法则求解下列线性方程： 
x1 − x2 + x3 = 3

x1 + 2x2 + 4x3 = 5

x1 + 3x2 + 9x3 = 7

解首先计算系数行列式 D：

D =

∣∣∣∣∣∣∣∣
1 −1 1

1 2 4

1 3 9

∣∣∣∣∣∣∣∣ = 1 ·

∣∣∣∣∣2 4

3 9

∣∣∣∣∣− (−1) ·

∣∣∣∣∣1 4

1 9

∣∣∣∣∣+ 1 ·

∣∣∣∣∣1 2

1 3

∣∣∣∣∣ = 6 + 5 + 1 = 12
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3.1 作业题

再计算 D1：

D1 =

∣∣∣∣∣∣∣∣
3 −1 1

5 2 4

7 3 9

∣∣∣∣∣∣∣∣ = 3 ·

∣∣∣∣∣2 4

3 9

∣∣∣∣∣− (−1) ·

∣∣∣∣∣5 4

7 9

∣∣∣∣∣+ 1 ·

∣∣∣∣∣5 2

7 3

∣∣∣∣∣ = 18 + 17 + 1 = 36

计算 D2：

D2 =

∣∣∣∣∣∣∣∣
1 3 1

1 5 4

1 7 9

∣∣∣∣∣∣∣∣ = 1 ·

∣∣∣∣∣5 4

7 9

∣∣∣∣∣− 3 ·

∣∣∣∣∣1 4

1 9

∣∣∣∣∣+ 1 ·

∣∣∣∣∣1 5

1 7

∣∣∣∣∣ = 17− 15 + 2 = 4

计算 D3：

D3 =

∣∣∣∣∣∣∣∣
1 −1 3

1 2 5

1 3 7

∣∣∣∣∣∣∣∣ = 1 ·

∣∣∣∣∣2 5

3 7

∣∣∣∣∣− (−1) ·

∣∣∣∣∣1 5

1 7

∣∣∣∣∣+ 3 ·

∣∣∣∣∣1 2

1 3

∣∣∣∣∣ = −1 + 2 + 3 = 4

因此方程组的解为：

x1 =
D1

D
=

36

12
= 3, x2 =

D2

D
=

4

12
=

1

3
, x3 =

D3

D
=

4

12
=

1

3

练习 3.6 (P85 17)

♣

设 x0, x1, . . . , xn及 y0, y1, . . . , yn是任给实数，其中 xi (0 ≤ i ≤ n)两两互不相等。证明：存在唯一的次数
不超过 n的多项式 p(x)，满足 p(xi) = yi, i = 0, 1, . . . , n。

解存在性：
我们可以直接构造出一个满足条件的次数不超过 n的多项式：

p(x) =

n∑
i=0

yiℓi(x),

其中
ℓi(x) =

∏
0≤j≤n
j ̸=i

x− xj

xi − xj

是拉格朗日插值基函数，满足 ℓi(xj) = δij。因此 p(xi) = yi，满足题意。
唯一性：
设存在两个次数不超过 n的多项式 p(x)和 q(x)都满足 p(xi) = q(xi) = yi。则令 r(x) = p(x)− q(x)，那么

r(x)是一个次数不超过 n的多项式，且在 n+ 1个不同点 x0, x1, . . . , xn 上都为零。
但一个次数 ≤ n的多项式至多有 n个零点（除非它是零多项式），所以 r(x) ≡ 0，即 p(x) ≡ q(x)。
故满足条件的多项式唯一。

练习 3.7 (P129：25)

♣

设方阵 A的逆矩阵 A−1 =


1 1 1

1 2 1

1 1 3

，求 A∗。
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3.1 作业题

解步骤一：计算逆矩阵的行列式

|A−1| =

∣∣∣∣∣∣∣∣
1 1 1

1 2 1

1 1 3

∣∣∣∣∣∣∣∣
= 1 ·

∣∣∣∣∣2 1

1 3

∣∣∣∣∣− 1 ·

∣∣∣∣∣1 1

1 3

∣∣∣∣∣+ 1 ·

∣∣∣∣∣1 2

1 1

∣∣∣∣∣
= 1× (6− 1)− 1× (3− 1) + 1× (1− 2)

= 5− 2− 1 = 2

步骤二：求原矩阵的行列式
|A| = 1

|A−1|
=

1

2

步骤三：计算伴随矩阵根据公式 A∗ = |A| ·A−1，可得：

A∗ =
1

2


1 1 1

1 2 1

1 1 3



=


1
2

1
2

1
2

1
2 1 1

2
1
2

1
2

3
2


练习 3.8 (P129 26)

♣

设方阵 A的伴随矩阵 A∗ =


0 0 0 1

0 0 2 0

0 −1 0 0

4 0 0 0

，求 A。

根据伴随矩阵与原矩阵的关系：
A ·A∗ = det(A) · I

两边取行列式，我们有
det(A∗) = det(A)3 = −8

得到
det(A) = −2

又有

A = det(A)(A∗)−1 = −2(A∗)−1 = −2


0 0 0 1/4

0 0 −1 0

0 1/2 0 0

1 0 0 0

 =


0 0 0 −1/2
0 0 2 0

0 −1 0 0

−2 0 0 0


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3.1 作业题

练习 3.9 (P130 36(1))

♣

计算下列矩阵的逆矩阵：

A =


1 0 1 −4
−1 −3 −4 −2
2 −1 4 4

2 3 −3 2


解我们使用初等行变换计算逆矩阵。将矩阵 A与单位矩阵 I 拼接成增广矩阵 (A | I)，进行高斯–约当消元。
初始增广矩阵： 

1 0 1 −4 1 0 0 0

−1 −3 −4 −2 0 1 0 0

2 −1 4 4 0 0 1 0

2 3 −3 2 0 0 0 1


第一步：用 R2 +R1 → R2, R3 − 2R1 → R3, R4 − 2R1 → R4

1 0 1 −4 1 0 0 0

0 −3 −3 −6 1 1 0 0

0 −1 2 12 −2 0 1 0

0 3 −5 10 −2 0 0 1


第二步：用 R2 ÷ (−3)化为主元 1

R2 ÷ (−3)⇒


1 0 1 −4 1 0 0 0

0 1 1 2 − 1
3 − 1

3 0 0

0 −1 2 12 −2 0 1 0

0 3 −5 10 −2 0 0 1


第三步：用 R3 +R2 → R3, R4 − 3R2 → R4

1 0 1 −4 1 0 0 0

0 1 1 2 − 1
3 − 1

3 0 0

0 0 3 14 − 7
3 − 1

3 1 0

0 0 −8 4 −1 1 0 1


第四步：R3 ÷ 3 

1 0 1 −4 1 0 0 0

0 1 1 2 − 1
3 − 1

3 0 0

0 0 1 14
3 − 7

9 − 1
9

1
3 0

0 0 −8 4 −1 1 0 1


第五步：R4 + 8R3 → R4, R1 −R3 → R1, R2 −R3 → R2

1 0 0 − 26
3

16
9

1
9 − 1

3 0

0 1 0 − 8
3

4
9 − 2

9 − 1
3 0

0 0 1 14
3 − 7

9 − 1
9

1
3 0

0 0 0 140
3 − 79

9
1
9

8
3 1


第六步：R4 ÷ 140

3 = × 3
140 

1 0 0 − 26
3

16
9

1
9 − 1

3 0

0 1 0 − 8
3

4
9 − 2

9 − 1
3 0

0 0 1 14
3 − 7

9 − 1
9

1
3 0

0 0 0 1 − 79
420

1
140

8
35

3
140


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3.1 作业题

第七步：消元第 4列，用 R1 +
26
3 R4, R2 +

8
3R4, R3 − 14

3 R4

略去计算细节，最终结果为：

A−1 =
1

372


98 50 84 78

−8 −80 −60 24

14 −46 12 −42
−65 1 24 9


练习 3.10 ( P130 36(5) )

♣

设矩阵 A ∈ Rn×n 为

A =


1 + a1 1 · · · 1

1 1 + a2 · · · 1
...

...
. . .

...

1 1 · · · 1 + an


试求其逆矩阵 A−1。

解记 1 = (1, 1 · · · , 1)⊤ ∈ Rn,有
A = diag(a1, a2, . . . , an) + 11⊤

注意 11⊤ 是秩为 1的矩阵，适合用 Sherman-Morrison公式来求逆 (即下一题证明的式子)。
设 D = diag(a1, a2, . . . , an)，则

A = D + 11⊤

若 D可逆，则由 Sherman-Morrison公式：

(D + uv⊤)−1 = D−1 − D−1uv⊤D−1

1 + v⊤D−1u

令 u = v = 1，可得

A−1 = D−1 − D−111⊤D−1

1 + 1⊤D−11

更具体地，D−1 = diag(1/a1, . . . , 1/an)，所以

A−1 = diag (1/a1, . . . , 1/an)−
1

1 +
∑n

i=1
1
ai

·


1
a1

...
1
an

( 1
d1
· · · 1

an

)
即：

A−1ij =

(
δij
ai

)
− 1

1 +
∑n

k=1
1
ak

·
(

1

aiaj

)
其中 δij 为克罗内克符号（i = j 时为 1，i 6= j 时为 0）。

练习 3.11 (P130 39 )

♣

设A是 n阶可逆方阵，a,b为 n维列向量。证明：A+abT 可逆当且仅当 1+bTA−1a 6= 0，且当A+abT

可逆时，有

(A+ abT )−1 = A−1 − A−1abTA−1

1 + bTA−1a
.

解（充分性）若 1 + bTA−1a 6= 0，直接验证

(A+ abT )−1 = A−1 − A−1abTA−1

1 + bTA−1a
.
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3.1 作业题

为了验证这个公式，我们将右边与 (A+ abT )相乘：
设

B = A−1 − A−1abTA−1

1 + bTA−1a
,

则

(A+ abT )B = AA−1 −A · A
−1abTA−1

1 + bTA−1a
+ abTA−1 − abT · A

−1abTA−1

1 + bTA−1a

= I − abTA−1

1 + bTA−1a
+

abTA−1

1 + bTA−1a
= I.

因此右边确实是 (A+ abT )−1。
（必要性）若 A+ abT 可逆，我们首先证明如下引理

Matrix determinant lemma 假设 A是一个可逆的方阵，u和 v是列向量。我们有：

det(A+ uv⊤) = det(A) det(1 + v⊤A−1u)

首先证明特殊情况 A = I 的情形。考虑以下矩阵乘法等式：(
I 0

vT 1

)(
I + uvT u

0 1

)(
I 0

−vT 1

)
=

(
I u

0 1 + vTu

)
等式左边的行列式是三个矩阵行列式的乘积。由于第一个和第三个矩阵是单位对角线的三角矩阵，它们的

行列式均为 1。中间矩阵的行列式就是我们需要的值。等式右边的行列式显然是 1 + vTu。因此我们得到：

det(I + uvT) = 1 + vTu

对于一般情形，可以表示为：

det(A+ uvT) = det(A) det(I + (A−1u)vT) = det(A)(1 + vTA−1u)

回到原题，由于 A和 A+ ab⊤ 均可逆，则由上面的引理我们立即有

det(1 + b⊤A−1a) 6= 0

综上所述，命题得证。

练习 3.12 (P131：41)

♣

设 A是m× n矩阵，B 是 n×m矩阵，证明：

det(In −BA) = det

(
Im A

B In

)
= det(Im −AB)

解证明思路：通过构造分块矩阵的行列式恒等式，利用分块矩阵的行列式公式完成证明。
步骤 1：构造分块矩阵考虑以下分块矩阵及其初等变换：(

Im A

B In

)
对第一行右乘 −B 加到第二行： (

Im A

0 In −BA

)

由于初等变换不改变行列式的值，故有：

det

(
Im A

B In

)
= det

(
Im A

0 In −BA

)
= det(Im) · det(In −BA) = det(In −BA)

步骤 2：对称构造类似地，对第二列左乘 −A加到第一列：(
Im −AB 0

B In

)
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3.1 作业题

从而得到：

det

(
Im A

B In

)
= det(Im −AB) · det(In) = det(Im −AB)

结论：联立两式即得：

det(In −BA) = det

(
Im A

B In

)
= det(Im −AB)

练习 3.13 (P131 42(2) )

♣

给定矩阵 A =


0 4 8 −5
−7 9 −3 1

1 −7 −11 7

−5 7 −1 0

，求 rank(A)。

解步骤 1：初等行变换 
0 4 8 −5
−7 9 −3 1

1 −7 −11 7

−5 7 −1 0

 R1↔R3−−−−−→


1 −7 −11 7

−7 9 −3 1

0 4 8 −5
−5 7 −1 0


步骤 2：消去第一列下方元素

R2 ← R2 + 7R1

R4 ← R4 + 5R1

⇒


1 −7 −11 7

0 −40 −80 50

0 4 8 −5
0 −28 −56 35


步骤 3：化简第二行并消元

R2 ← −
1

10
R2 ⇒


1 −7 −11 7

0 4 8 −5
0 4 8 −5
0 −28 −56 35


R3 ← R3 −R2

R4 ← R4 + 7R2

⇒


1 −7 −11 7

0 4 8 −5
0 0 0 0

0 0 0 0


步骤 4：确定秩非零行数为 2，因此：

rank(A) = 2

结论：矩阵 A的秩为 2，图中左侧标签”2”即为秩的标注。
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3.1 作业题

练习 3.14 (P131 42(3))

♣

给定矩阵 A =


1 4 9 16

4 9 16 25

9 16 25 36

16 25 36 49

，求矩阵 A的秩 rank(A)。

解本题可通过对矩阵 A进行初等行变换化为阶梯形矩阵，再根据阶梯形矩阵非零行的行数确定矩阵的秩。

已知 A =


1 4 9 16

4 9 16 25

9 16 25 36

16 25 36 49

。
用第二行减去第一行的 4倍，第三行减去第一行的 9倍，第四行减去第一行的 16倍，可得：

A1 =


1 4 9 16

4− 4× 1 9− 4× 4 16− 4× 9 25− 4× 16

9− 9× 1 16− 9× 4 25− 9× 9 36− 9× 16

16− 16× 1 25− 16× 4 36− 16× 9 49− 16× 16

 =


1 4 9 16

0 −7 −20 −39
0 −20 −56 −108
0 −39 −108 −207


为了消去第三行第二个元素，先将第二行乘以 20

7 ，再用第三行减去变化后第二行，同时将第二行乘以
39
7 ，

用第四行减去变化后第二行，可得：

A2 =


1 4 9 16

0 −7 −20 −39
0 −20− (−7)× 20

7 −56− (−20)× 20
7 −108− (−39)× 20

7

0 −39− (−7)× 39
7 −108− (−20)× 39

7 −207− (−39)× 39
7

 =


1 4 9 16

0 −7 −20 −39
0 0 − 72

7 − 144
7

0 0 − 144
7 − 288

7


将第三行乘以 2，再用第四行减去变化后的第三行，可得：

A3 =


1 4 9 16

0 −7 −20 −39
0 0 − 72

7 − 144
7

0 0 − 144
7 − (− 72

7 )× 2 − 288
7 − (− 144

7 )× 2

 =


1 4 9 16

0 −7 −20 −39
0 0 − 72

7 − 144
7

0 0 0 0


阶梯形矩阵 A3的非零行有 3行，根据矩阵秩的定义：矩阵的秩等于其阶梯形矩阵非零行的行数，所以矩阵

A的秩 rank(A) = 3。
综上，矩阵 A的秩为 3。

练习 3.15 (P131 43)

♣

对于实数 a, b的各种取值，讨论实矩阵

A =


1 2 3

2 4 a

3 b 9


的秩 rank(A)。

解解题思路：通过初等行变换和行列式计算，分析矩阵的秩随参数 a, b的变化情况。
步骤 1：初等行变换 

1 2 3

2 4 a

3 b 9

 R2←R2−2R1−−−−−−−−→


1 2 3

0 0 a− 6

3 b 9


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3.2 补充练习

R3←R3−3R1−−−−−−−−→


1 2 3

0 0 a− 6

0 b− 6 0


步骤 2：讨论不同情况 1. 当 a 6= 6且 b 6= 6时：•第二行和第三行均非零且线性无关 • rank(A) = 3

2. 当 a = 6且 b 6= 6时：•第二行全零，第三行非零 • rank(A) = 2

3. 当 a 6= 6且 b = 6时：•第三行全零，第二行非零 • rank(A) = 2

4. 当 a = 6且 b = 6时：•第二、三行全零 • rank(A) = 1

结论：

rank(A) =


3, 当a 6= 6且b 6= 6

2, 当a = 6或b = 6但不同时成立

1, 当a = b = 6

练习 3.16 (P131 44)

♣
设 A为 n阶方阵且满足 A2 = I。求分块对角矩阵 diag(I +A, I −A)的相抵标准形。

解 Lemma:Sylvester不等式
对于 A ∈ Rs×n, B ∈ Rn×m,我们有

r(A) + r(B) ≤ r(AB) + n(
In O

O AB

)
→

(
In O

A AB

)
→

(
In −B
A O

)
→

(
−B In

O A

)

通过上面的初等变换，我们有

n+ r(AB) = r(

(
−B In

O A

)
) ≥ r(A) + r(B)

命题得证。
回到原题

r(diag(I +A, I −A)) = r(I −A) + r(I +A) ≤ r((I −A)(I +A)) + n = n

r(diag(I +A, I −A)) = r(I −A) + r(I +A) ≥ r((I −A) + (I +A)) = n

故
r(diag(I +A, I −A)) = n

相抵标准型为 (
In 0

0 0

)

3.2 补充练习

练习 3.17

♣

设 A∗ 表示 n阶方阵 A的伴随方阵。证明：
1. rank(A∗) = n ⇐⇒ rank(A) = n；
2. rank(A∗) = 1 ⇐⇒ rank(A) = n− 1；
3. rank(A∗) = 0 ⇐⇒ rank(A) < n− 1。
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3.2 补充练习

解首先，由于 A∗的每个元素 A∗ji = (−1)j+iMji，Mji是 A的一个 n− 1阶子式。反过来，A的每个 n− 1阶子
式都是某个Mji。由此得到：

rankA∗ = 0 ⇐⇒ A∗ = O ⇐⇒ A的所有的n− 1阶子式Mji = 0 ⇐⇒ rankA < n− 1.

这证明了结论（3）成立。
现在设 rankA∗ 6= 0，即 rankA ≥ n− 1。
先设 rankA = n，则行列式 |A| 6= 0，由 AA∗ = |A|I 可知 A∗ 可逆，rankA∗ = n。
再设 rankA = n− 1，|A| = 0，则 AA∗ = |A|I = O。由练习 3.16中的 Sylvester不等式我们有

rankA∗ ≤ n− rankA = 1

又我们假设了 rankA∗ 6= 0,故我们有 rankA∗ = 1

练习 3.18

♣
设 A,B 是同阶方阵，求证：rank(AB − I) ≤ rank(A− I) + rank(B − I)。

解

rank(A− I) + rank(B − I) = rank

(
A− I O

O B − I

)

= rank

(
I I

O I

)(
A− I O

O B − I

)(
I −B
O I

)

= rank

(
A− I (A− I)(−B) + (B − I)

O B − I

)

= rank

(
A− I I −AB

O B − I

)
≥ rank(AB − I)

练习 3.19

♣

(矩阵的广义逆)
1. 对任意矩阵 A ∈ Fm×n，存在矩阵 A− ∈ Fn×m 满足条件 AA−A = A。
什么条件下 A− 由 A唯一决定？（A− 称为 A的广义逆（generalized inverse matrix））

2. 设 A ∈ Fm×n, β ∈ Fm×1，A− ∈ Fn×m 满足条件 AA−A = A。试证：
(a). 线性方程组 AX = β 有解的充要条件是 AA−β = β；
(b). 方程组有解时的通解为：

X = A−β + (I −A−A)Y, ∀Y ∈ Fm×1.

解
1. 对任意 A ∈ Fm×n，存在可逆方阵 P,Q将 A相抵到标准形

S = PAQ =

(
I(r) O

O O

)
, A = P−1SQ−1

A− 满足的条件 AA−A = A成为

P−1SQ−1A−P−1SQ−1 = P−1SQ−1 (1)

等式 (1)两边分别左乘 P，右乘 Q，并记 B = Q−1A−P−1。则等式 (1)成为 SBS = S，即(
I(r) O

O O

)
B

(
I(r) O

O O

)
=

(
I(r) O

O O

)
(2)
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3.2 补充练习

将 B 分块为 B =

(
B11 B12

B21 B22

)
使 B11 ∈ F r×r，代入等式 (2)，得到

(
B11 O

O O

)
=

(
I(r) O

O O

)
可见 (2)成立的充分必要条件为 B11 = I(r)，即

P−1A−Q−1 = B =

(
I(r) B12

B22 B22

)
, A− = P

(
I(r) B12

B22 B22

)
Q (3)

将 (1)和 (3)代入可验证所要求的条件 AA−A = A满足。
等式 (3)中的B12 ∈ F r×(m−r)，B21 ∈ F (n−r)×r，B22 ∈ F (n−r)×(m−r)可以任取。因此，当m > r或 n > r

时 A− 不唯一。仅当 n = m = r即 A是可逆方阵时，A− 唯一。此时 B = I，A− = PQ = A−1 就是 A的
逆。因此 A− 确实是 A的逆 A−1 的推广，有资格称为“广义逆”。

2. 设 A− 满足条件 AA−A = A。如果方程组 AX = β 有解 X1，则

AX1 = β ⇒ β = (AA−A)X1 = (AA−)(AX1) = AA−β

反过来，当 β = AA−β 时 X0 = A−β 满足 AX0 = β，是方程组 AX = β 的一个解。
方程组 AX = β 的通解 X 具有形式 X = A−β + ξ，其中 ξ 是齐次线性方程组 Aξ = 0 的通解。对任意
Y ∈ Fm×1有 A(I −A−A)Y = (A−AA−A)Y = OY = 0，可见 ξ = (I −A−A)Y 是 Aξ = 0的解。反过来，
Aξ = 0的每个解 ξ = ξ − A−0 = ξ − A−Aξ = (I − A−A)ξ 具有 (I − A−A)Y 的形式（相当于取 Y = ξ）。
因此 (I −A−A)Y 是齐次线性方程组 AX = 0的通解，A−β + (I −A−A)Y 是 AX = β 的通解。□

练习 3.20

♣
方阵满足 A(A−B)−1 = BC,证明:(A−B)−1A = CB.

解由于
A(A−B)−1 = BC

我们有

I = (A−B)(A−B)−1 = A(A−B)−1 −B(A−B)−1 = BC −B(A−B)−1 = B(C − (A−B)−1)

则我们有
I = (C − (A−B)−1)B

我们得到
CB = I + (A−B)−1B = (A−B)−1(A−B) + (A−B)−1B = (A−B)−1A
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第 4章 第四次习题课

4.1 作业题

练习 4.1 (P132,46)

♣
设 A ∈ Fm×n.证明：线性方程组 Ax = 0有非零解的充分必要条件是 rank(A) < n.

证明 记 rank(A) = r，则存在可逆方阵 P , Q：

A = P

(
Ir 0

0 0

)
Q

从而方程变为：

P

(
Ir 0

0 0

)
Qx = 0⇒

(
Ir 0

0 0

)
Qx = 0

已有 r ≤ n.若 r = n，记 y = Qx = (y1, y2, · · · , yn)T，则方程组等价于 Iny = 0，从而 y = 0,x = Q−1y = 0.
于是存在非零解的充分必要条件是 rank(A) < n.�

笔记学习完线性相关线性无关后此题有另一种解法：
记 A的列向量为 a1, a2, · · · , an，则：

原方程组有非零解⇔存在不全为 0的x1, x2, · · · , xn 使得 Σn
i=1xiai = 0

⇔ a1, a2, · · · , an线性相关⇔ rank(A) < n

练习 4.2 (P172,3)

♣

在 F 4 中，判断向量 b能否写成 a1, a2, a3 的线性组合.若能，请写出一种表示方式.
(2) a1 = (3,−5, 2,−4)T , a2 = (−1, 7,−3, 6)T , a3 = (3, 11,−5, 10)T , b = (2,−30, 13,−26)T

解设 b = x1a1 + x2a2 + x3a3，用线性方程组求解的思路：
3 −1 3 2

−5 7 11 −30
2 −3 −5 13

−4 6 10 −26


1
3 r1→r1−−−−−→


1 − 1

3 1 2
3

−5 7 11 −30
2 −3 −5 13

−4 6 10 −26



5r1→r2,−2r1→r3−−−−−−−−−−−→
4r1→r4


1 − 1

3 1 2
3

0 16
3 16 − 80

3

0 − 7
3 −7 35

3

0 14
3 14 − 70

3


3
16 r2→r2−−−−−−→


1 − 1

3 1 2
3

0 1 3 −5
0 − 7

3 −7 35
3

0 14
3 14 − 70

3



1
3 r2→r1,

7
3 r2→r3−−−−−−−−−−−→

− 14
3 r2→r4


1 0 2 −1
0 1 3 −5
0 0 0 0

0 0 0 0


从而线性方程组有解，通解为： 

x1 = −1− 2t,

x2 = −5− 3t,

x3 = t



4.1 作业题

自然 b可以写成 a1, a2, a3 的线性组合.

练习 4.3 (P173,4)

♣

设 a1 = (1, 0, 0, 0), a2 = (1, 1, 0, 0), a3 = (1, 1, 1, 0), a4 = (1, 1, 1, 1).
证明：F 4 中任何向量可以写成 a1, a2, a3, a4 的线性组合，且表示唯一.

证明 对 F 4 中任意一个向量 b = (b1, b2, b3, b4)，设 x = (x1, x2, x3, x4)和 b = x1a1 + x2a2 + x3a3 + x4a4 则：

Ax = bT 其中， A =


1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1


该方程组存在唯一解:x = A−1b = (b1 − b2, b2 − b3, b3 − b4, b4).�
笔记在承认习题 5.14给出的向量表示基本定理后，那么这个题几乎是显然的，因为 a1, a2, a3, a4 线性无关.

练习 4.4 (P173,6)

♣设 a1, a2, a3, , a4 是三维几何空间中的四个向量，证明它们必定线性相关.

证明 记 A = (aT1 , aT2 , aT3 , aT4 ).对方程 Ax = 0而言，由于 rank(A) ≤ 3 < 4,用习题 4.46的结论，此方程有非
零解.

从而存在不全为 0的 x1, x2, x3, x4, 使得 Σ4
i=1xiai = 0.

练习 4.5 (P173,10)

♣

判断下列向量组是否线性相关.
(2) a1 = (3, 1, 2,−4), a2 = (1, 0, 5, 2), a3 = (−1, 2, 0, 3)
(3) a1 = (−2, 1, 0, 3), a2 = (1,−3, 2, 4), a3 = (3, 0, 2,−1), a4 = (2,−2, 4, 6)

解 (2) 设 A = (a1, a2, a3)，直接来计算 rank(A)：
3 1 2 −4
1 0 5 2

−1 2 0 3

 r1↔r2−−−−→


1 0 5 2

3 1 2 −4
−1 2 0 3


−3r1→r2−−−−−−→
r1→r3


1 0 5 2

0 1 −13 −10
0 2 5 5

 −2r2→r3−−−−−−→


1 0 5 2

0 1 −13 −10
0 0 31 25


所以(2)的向量组线性无关.

(3) 设 A = (a1, a2, a3, a4)，同样计算 rank(A)：
−2 1 0 3

1 −3 2 4

3 0 2 −1
2 −2 4 6

 r1↔r2−−−−→


1 −3 2 4

−2 1 0 3

3 0 2 −1
2 −2 4 6



2r1→r2,−3r1→r3−−−−−−−−−−−→
−2r1→r4


1 −3 2 4

0 −5 4 11

0 9 −4 −13
0 4 0 −2


这里略去过程，可以发现 rank(A) = 3，于是(3)的向量组线性相关.
（当然如果你观察力惊人，其实可以发现：a4 = a1 + a2 + a3).
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4.1 作业题

练习 4.6 (P174,12)

♣

下列说法是否正确？为什么？
(1) 若 a1, a2, · · · , as (s ≥ 2)线性相关，则其中每一个向量都可以表示成其他向量的线性组合.
(2) 若向量组的任何不是它本身的子向量组都线性无关，则给向量组也线性无关.
(3) 若向量组线性无关，则它的任何子向量组都线性无关.
(4) Fn 的 n+ 1个向量组成的向量组必线性相关.
(5) 设 a1, a2, · · · , as 线性无关，则 a1 + a2, a2 + a3, · · · , as + a1 必线性无关.
(6) 设 a1, a2, · · · , as 线性相关，则 a1 + a2, a2 + a3, · · · , as + a1 必线性相关.
(7) 设 a1, a2, · · · , as ∈ Fn 线性无关，则它们的加长向量组也必线性无关.
(8) 设 a1, a2, · · · , as ∈ Fn 线性相关，则它们的加长向量组也必线性相关.

解正确的说法是 (3)(4)(6)(7)，下面我将逐一给出证明或反例.
(1) 取 a1 = (1, 0), a2 = (0, 0)，则向量组确线性相关，但 a1 显然无法表示成 a2 的线性组合.
(2) 取 a1 = (1, 0), a2 = (0, 1), a3 = (1, 1)，则向量组的任何非本身的子向量组线性无关，但该向量组线性

相关.
(3) 向量组 a1, a2, · · · , as 线性无关⇔关于 x1, x2, · · · , xs 的线性方程组 Σs

i=1xiai 无非零解

⇒关于 x1, x2, · · · , xs 的线性方程组 Σs
i=1xiai 无满足 xj = 0(j 6= ik, k = 1, 2, · · · , r)非零解

⇔关于 xi1 , xi2 , · · · , xir 的线性方程组 Σr
k=1xikaik 无非零解⇔向量组 ai1 , ai2 , · · · , air 线性无关

(4) 仿照习题 5.6的证明过程：
记 A = (aT1 , aT2 , · · · , aTn+1).对方程 Ax = 0而言，由于 rank(A) ≤ n < n + 1,用习题 4.46的结论，此方程

有非零解.
从而存在不全为 0的 x1, x2, · · · , xn+1, 使得 Σn+1

i=1 xiai = 0，即 a1, a2, · · · , an+1 ∈ Fn 一定线性相关
(5) s = 2n时，有 Σ2n

i=1ai = Σn
p=1a2p−1 + a2p = Σn

q=1a2q + a2q+1 （这里记 a2n+1 = a1).
(6) s = 2n时见 (5)
s = 2n+ 1时：注意到有以下这个关系:

P (a1, a2, · · · , as) = (a1 + a2, a2 + a3, · · · , as + a1),其中：P =



1 0 0 · · · 1

1 1 0 · · · 0

0 1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


按照第一行展开可得 det(P ) = 1+(−1)s+1 = 2，从而 rank(P ) = n，两组向量等价，a1+a2, a2+a3, · · · , as+a1
线性相关.

(7) 考虑其逆否命题：a1, a2, · · · , as ∈ Fn的加长向量组 b1, b2, · · · , bs ∈ Fm线性相关，则 a1, a2, · · · , as ∈
Fn 线性相关.

这里取 ai = (ai1, ai2, · · · , ain), bi = (ai1, ai2, aim)，则有方程组 Σs
i=1λiaij = 0 1 ≤ j ≤ m有非零解，只关

注前m个方程后，Σs
i=1λiaij = 0 1 ≤ j ≤ n有非零解. 即 a1, a2, · · · , as ∈ Fn 线性相关.

(8) 取 a1 = (1), a2 = (2), b1 = (1, 0), b2 = (2, 2)，则原向量组线性相关，加长向量组线性无关.�
笔记 (1)的错误主要出现于 Σs

i=1λiai = 0时无法保证 λi 不等于 0，实际上正确的说法是存在一个向量可以表示
成其他的线性组合.
部分同学的 (7)(8) 判断不清是因为概念不熟悉，加长向量组的定义和 (7) 的证明可以在书本 P141 的定理

5.2.5找到.
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4.1 作业题

练习 4.7 (P174,14)

♣

证明向量表示基本定理：设 a1, a2, · · · , an ∈ Fn线性无关，则任意向量 b ∈ Fn可以表示为 a1, a2, · · · , an
的线性组合，且表示唯一.

证明 设 b = Σn
i=1xiai 和 A = (a1, a2, · · · , an)，则方程组可以表示为：

Ax = b

由条件 rank(A) = n，从而 A可逆，有唯一解 x = A−1b

练习 4.8 (P174,17)

♣

设向量组 a1, a2, · · · , ar 线性无关，且 a1, a2, · · · , ar 可以由 b1, b2, · · · , br 线性表示，则 b1, b2, · · · , br 也
线性无关.

证明 证明: 设表示关系为 ai = Σr
j=1cijbj 则如果记 C = (cij)r×r，会有:

(
a1 a2 · · · ar

)
=


c11 c12 · · · c1r

c21 c22 · · · c2r
...

...
. . .

...

cr1 cr2 · · · crr


(

b1 b2 · · · br

)

于是 r = rank(a1, a2, · · · , ar) ≤ rank(b1, b2, · · · , br) ≤ r 从而就有 rank(b1, b2, · · · , br) = r，这组向量线性无
关.

练习 4.9 (P174,19)

♣

求下列向量组的极大无关组与秩：
(2) a1 = (1,−1, 2, 4), a2 = (0, 3, 1, 2), a3 = (3, 0, 7, 14), a4 = (1,−1, 2, 0), a5 = (2, 1, 5, 6)

解由：

rank



1 −1 2 4

0 3 1 2

3 0 7 14

1 −1 2 0

2 1 5 6


= rank



1 −1 2 4

0 3 1 2

0 3 1 2

0 0 0 −4
0 3 1 −2


= rank



1 −1 2 4

0 3 1 2

0 0 0 0

0 0 0 −4
0 0 0 −4


可知向量组的秩为 3，讨论后发现 (a1, a2, a4), (a1, a2, a5), (a1, a3, a4), (a1, a3, a5), (a1, a4, a5), (a2, a3, a4), (a2, a3, a5),
(a2, a4, a5), (a3, a4, a5)为全部的极大线性无关组（共 9个）.

练习 4.10 (P175,22)

♣

设向量组 a1, a2, · · · , am 的秩为 r. 证明：其中任何 r个线性无关的向量构成 a1, a2, · · · , am 的极大线性无
关组.

证明 任取其中 r个线性无关的向量 ai1 , ai2 , · · · , air，为使得它们构成极大线性无关组，只需要验证加入一个向
量后这个组线性相关.

对 ∀k 6= ij , 1 ≤ j ≤ r，新的向量组 ai1 , ai2 , · · · , air , ak 的 rank不超过 rank(a1, a2, · · · , am) = r，从而新向
量组是线性相关的.所以任何 r个线性无关的向量都构成原向量组的极大线性无关组.

练习 4.11 (P175,27)

♣
证明：rank(a1, a2, · · · , ar, b1, b2, · · · , bs) ≤ rank(a1, a2, · · · , ar) + rank(b1, b2, · · · , bs)

证明 法一：记 A = (a1, a2, · · · , ar), B = (b1, b2, · · · , bs)，即证明：rank(A,B) ≤ rank(A) + rank(B)，这是较
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4.2 补充练习

为显然的.

rank

(
A O

O B

)
= rank

(
A B

O B

)
≥ rank

(
A B

)
法二：记 rank(A) = m, rank(B) = n，并取 (a1, a2, · · · , ar)的一个极大线性无关组 (ai1 , ai2 , · · · , aim)和 (b1, b2, · · · , bs)

的一个极大线性无关组 (bj1 , bj2 , · · · , bjn)

那么，对于这个向量组 (ai1 , ai2 , · · · , aim , bj1 , bj2 , · · · , bjn),它的极大线性无关组 (称之为 {ck})可以表示出
(ai1 , ai2 , · · · , aim)和 (bj1 , bj2 , · · · , bjn)中任意一个向量从而可以表示出 (a1, a2, · · · , ar)和 (b1, b2, · · · , bs)中任
何一个向量.

于是 {ck}可以作为 (a1, a2, · · · , ar, b1, b2, · · · , bs)的极大线性无关组.
最后由于 {ck}中之多有m+ n个向量，于是 LHS ≤ m+ n = RHS

4.2 补充练习

练习 4.12

♣

证明：(1)设 S, T 是向量组，则 S 与 T 等价⇔ rank S = rank (S ∪ T ) = rank T

(2)两个齐次线性方程组 (I)(II)同解的充分必要条件是它们互为线性组合.

证明 （1）设 S0, T0 分别是 S, T 的极大线性无关组，则 S0, T0 所含向量个数

r = rank S = |S0|，s = rank T = |T0|

（这里 |X|指的是 X 作为一个集合的元素个数）.
左推右：S和 T 等价，则 T 是 S的线性组合，而 S是 S0的线性组合，因此 T 也是 S0的线性组合. 现在 S

和 T 都是 S0 的线性组合，因此 S ∪ T 也是 S0 的线性组合，又由 S0 的线性无关性有：S0 是 S ∪ T 的极大线性
无关组，于是 rank(S ∪ T ) = |S0| = rank S.同理 rank(S ∪ T ) = |T0| = rank T .

右推左：设 rank(S ∪ T ) = r = rank S，则 S ∪ T 中由任意 r 个元素组成的线性无关子集 S0 是 S ∪ T

的极大线性无关组，只在 S 中取 S0 的元素就会得到：T 是 S0 的线性组合从而是 S 的线性组合. 同理，由
rank(S ∪ T ) = r = rank T 可以得到 S 是 T 的线性组合.
因此，rank S = rank (S ∪ T ) = rank T ⇒ S 与 T 互为线性组合⇒ S 与 T 等价.
（2）右推左：如果方程组 (I)是 (II)的线性组合，则 (II)的解都是 (I)的解. 由此可知，如果方程组 (I)(II)

互为线性组合，则 (I)与 (II)中每个方程组的解都是另一个方程组的解，两个方程组同解.
左推右：若 (I)(II)同解，则两个方程组合并得到的第三个方程组 (III)也和它们同解.设方程组 (I),(II)的

系数矩阵的行向量分别为 S,T，则将 (I),(II)合并得到的方程组 (III)的系数矩阵的行向量就是 S ∪ T .
由于三个方程组同解，它们的未知数个数 n当然相同，解空间维数 n− rank S,n− rank T ,n− rank(S ∪T )

也相同，就有 rank S = rank T = rank(S ∪T )，由（1）的结论 S与 T 等价，也就是 (I)和 (II)互为线性组合.

练习 4.13

♣已知数域 F 上 n元非齐次线性方程组的解生成 Fn，求方程组的系数矩阵的秩.

解取非齐次线性方程组 AX = β 的一组解 X1, · · · , Xn 组成 Fn 的一组基.
那么 n− 1个向量 X2 −X1, · · · , Xn −X1 都是齐次线性方程组 AX = 0的解.设

λ2(X2 −X1) + · · ·+ λn(Xn −X1) = 0

则 −(λ2 + · · · + λn)X1 + λ2X2 + · · · + λnXn = 0. 由 X1, X2, · · · , Xn 线性无关可知 λ2 = · · · = λn = 0，
X2 −X1, · · · , Xn −X1 线性无关.
这说明齐次线性方程组 AX = 0的解空间维数 n− rank A ≥ n− 1，rank A ≤ 1.
最后，如果 rank A = 0，A = O，则非齐次线性方程组 AX = β 无解. 因此 rank A = 1.
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练习 4.14

♣

设 A是 n阶方阵，证明：
(1)如果 rank Am = rank Am+1 对某个正整数m成立，则 rank Am = rank Am+k 对所有的正整数 k成
立.
(2) rank An = rank An+k 对所有的正整数 k成立.

证明 对每个正整数 k，记 Vk为齐次线性方程组AkX = 0的解空间.则 dim Vk = n−rank Ak，于是 rank Am =

rank Am+k ⇔ dim Vm = dimVm+k.
对任意正整数 k与 s有：

X ∈ Vk ⇒ AkX = 0⇒ Ak+sX = As(AkX) = 0⇒ X ∈ Vk+s

这证明了 Vk ⊆ Vk+s.
(1)现在我们证明 Vm+k ⊆ Vm，因为如果这个结论成立，立马有：

Vm = Vm+k ⇒ rank Am = rank Am+k

条件是 dim Vm = dim Vm+1，结合 Vm ⊆ Vm+1 就有 Vm = Vm+1.

X ∈ Vm+k ⇒ Am+kX = Am+1(Ak−1X) = 0⇒ Ak−1X ∈ Vm+1 = Vm

⇒ Am+k−1X = Am(Ak−1X) = 0⇒ X ∈ Vm+k−1

这证明了 Vm+k ∈ Vm+k−1.从而 Vm+k = Vm+k−1 对任意正整数 k成立.于是有：

Vm+k = Vm+k−1 = Vm+k−2 = · · · = Vm+1 = Vm ⇒ rank Am+k = rank Am

(2)由于对任意正整数 k,s都有 Vk ⊆ Vk+s，于是 dim Vk = n − rank Ak ≤ dim Vk+s = n − rank Ak+s，从而
rank Ak ≥ rank Ak+s. 如果存在m ≤ n使得 rank Am = rank Am+1.那么由 (1)的证明 rank Am = rank Am+k

对任意的正整数 k成立，从而有

rank An+k = rank Am+(n−m+k) = rank Am = rank Am+(n−m) = rank An

(*)如果不存在这样的 m，这说明对所有的 m ≤ n都有 rank Am 6= rank Am+1，从而 rank Am > rank Am+1，
进而 rank Am ≥ rank Am+1 + 1.由数学归纳法可知m+ k ≤ n+ 1时 rank Am ≥ rank Am+k + k.
取 m = 1, k = n，rank A ≥ rank An+1 + n ≥ n. 从而一定有 rank A = n，A 可逆，但这样 A2 可逆，

rank A2 = rank A矛盾.这证明了 (*)不可能发生，于是原命题得证.�
笔记给 (1)的另一个思路大致是：由 Frobenius不等式可证明 an = rank An−1 − rank An是一个非负不增的数
列（这里默认 A0 = I）.

(1)的条件是 am+1 = 0，所以很快就有 am+k = 0 ∀ k ∈ N∗.然后结论就成立了.

练习 4.15

♣

设向量组 S = {α1, · · · , αs}线性无关，并且可以由向量组 T = {β1, · · · , βt}线性表出.
证明：可以用向量 α1, · · · , αs 替换向量 β1, · · · , βt 中某 s 个向量 βi1 , · · · , βis，使得得到的向量组
{α1, · · · , αs, βis+1

, · · · , βit}与 {β1, · · · , βt}等价.

证明 较为容易发现 s ≤ t. 对 s采用数学归纳法证明，s = 0时显然无需证明. 设 s ≥ 1，并设结论已对 s − 1个
向量组成的集合 Ss−1 = {α1, · · · , αs−1}成立.即：可以用 α1, · · · , αs−1 替换 T 中某 s− 1个向量，得到 Ts−1 =

{α1, · · · , αs−1, βis , · · · , βit}与 T 等价.
αs 是 T 的线性组合，从而也是 Ts−1 的线性组合：

αs = λ1α1 + · · ·+ λs−1αs−1 + λsβis + · · ·+ λtβit (1)
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4.2 补充练习

如果 λs, · · · , λt全为 0，则αs是α1, · · · , αs−1的线性组合，与α1, · · · , αs线性无关矛盾.于是存在 s ≤ p ≤ t

的 p使得 λp 6= 0.将等式 (1)做变形可得：

βip =
1

λp
[αs − (λ1α1 + · · ·+ λs−1αs−1 +Σt

j=s, j ̸=pλjβij )]

βip 可以写成 αi (1 ≤ i ≤ s)和 βij (s ≤ j ≤ t, j 6= p)的线性组合.
用 αs替换 Ts−1中的 βip，得到的集合 Ts和 Ts−1等价，进而与 T 等价，且 Ts正是由 α1, · · · , αs替换了 T

中某 s个向量得到.

练习 4.16

♣

设 V 是由复数组成的全体无穷数列 {an} = {a1, a2, · · · , an, · · · }组成的集合，定义 V 中任意两个的加法
{an}+ {bn} = {an + bn}及任意数列与任意复数的乘法 λ{an} = {λan}，则 V 成为复数域 C 上线性空间
(1)求证：V 中满足条件 an = an−1 + an−2 (∀ n ≥ 3)的全体数列 {an}组成 V 的子空间W .W 的维数是
多少？
(2)求证：W 中存在一组由等比数列组成的基M .
(3)设数列 {Fn}满足条件 F1 = F2 = 1且 Fn = Fn−1 + Fn−2.求 {Fn}在基 M 下的坐标，并由此求出
{Fn}的通项公式.

�
笔记这道题建议在理解一般线性空间的内容后食用.
解 (1) 设 α = {an}, β = {bn} 都属于 W，满足 an = an−1 + an−2, bn = bn−1 + bn−2 ∀ n ≤ 3, λ ∈ C. 则
α+ β = an + bn 和 λα = λan 满足：

an + bn = (an−1 + an−2) + (bn−1 + bn−2) = (an−1 + bn−1) + (an−2 + bn−2)

λan = λ(an−1 + an−2) = λan−1 + λan−2

这表明 α+ β ∈W,λα ∈W .从而W 是 V 的子空间.
考虑数列 α0 = {1, 0, 1, 1, · · · }和 β0 = {0, 1, 0, 1, · · · }，由于每个数列由它的前两项唯一确定，可以发现对

一般的数列 {an} = {a1, a2, · · · , an, · · · }，它可以被表示为 {an} = a1α0 + a2β0，且 α0 和 β0 线性无关.
由书本 P166的定义 5.6.9可知 dim W = 2.
(2)设等比数列 α = {a1, a1q, · · · , a1qn−1, . . . }的首项 a1 和公比 q都不为 0，则

α ∈W ⇔ a1q
n−1 = a1q

n−2 + a1q
n−3 ⇔ q2 = q + 1⇔ q =

1±
√
5

2

可见，以 q1 = 1−
√
5

2 和 q2 = 1+
√
5

2 的等比数列

α1 = {1, q1, · · · , qn−11 , · · · }, α2 = {1, q2, · · · , qn−12 , · · · }

都含于W，它们线性无关构成了 2维空间W 的一组基M .
(3)直接计算线性方程组 x+ y = 1

q1x+ q2y = 1

可得x =

√
5− 1

2
√
5

, y =

√
5 + 1

2
√
5

. 从而{Fn} =
√
5− 1

2
√
5

α1 +

√
5 + 1

2
√
5

α2.

最后带入就有：

Fn = xqn−11 + yqn−12 =
(
√
5− 1)(1−

√
5)n−1 + (

√
5 + 1)(1 +

√
5)n−1

2
√
5× 2n−1

=
(1 +

√
5)n − (1−

√
5)n

2n
√
5

38



4.3 2023期中

4.3 2023期中

练习 4.17 (一.填空题)

♣

1.排列 (3, 6, 5, 4, 1, 2)的逆序数是？
2.下面这个齐次线性方程组的解空间维数为？

x1 + x2 + x3 + x4 + x5 = 0

x1 + 2x2 + 3x3 − 2x4 + 2x5 = 0

x1 − x3 + 4x4 = 0

3.方程

(
3 5

1 2

)
X =

(
4 −1 2

3 0 1

)
的解 X 为？

4.设 A =


1 2 3

4 5 6

7 8 9

，A∗ 是其伴随矩阵，则 rank(A) =？ rank(A∗) =？

5.如果 A =

(
A1 A2

0 A3

)
，其中 A1, A3 是可逆的，那么 A−1 =？

6.矩阵 A =


1 −1 3 2

−2 2 −11 5

4 5 17 3

的相抵标准型为？

解六个题目的答案依次为:

(1) 11 (2) 3 (3)

(
−7 −2 9

5 1 5

)

(4) rank(A) = 2, rank(A∗) = 1 (5)

(
A−11 −A−11 A2A

−1
3

0 A−13

)
(6) (I3, 0)

练习 4.18 (二.判断题)

♣

判断下列说法是否正确，正确请简要说明理由，错误请给出反例
(1)在 R3 中，任何四个向量都线性相关.
(2)如果向量组 α1, α2, · · · , αs (s ≥ 2)线性相关，则其中每一个向量都可以由其余的向量线性表示.
(3)设 A是一个秩为 4的矩阵，那么一定存在秩为 2的矩阵 B 和 C 使得 A = B + C.
(4)设 A,B 为二阶方阵，且 AB = B − I，那么 AB = BA.

解（1）（2）分别是作业题的 5.6和 5.12（1），在此略.

（3）正确. 证明：由条件，存在可逆的 P ,Q，使得 A = P

(
I4 O

O O

)
Q. 这时取

B = P

(
I2 O

O O

)
Q, C = P


O2 O2 O

O2 I2 O

O O O

Q

就会有 rank(B) = rank(C) = 2且 A = B + C.
法二: 不妨设 A的前四行 α1, α2, α3, α4 是线性无关的（否则将 B 和 C 的对应行交换位置即可），而后面每

一行都有 αm = Σ4
i=1xmiαi.

这时来构造 B 的行向量，取 B 的前两行仍为 α1, α2，第 3,4 行为 0 向量. 对第 m 行 (m ≥ 5)，βm =

xm1α1 + xm2α2.
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构造 C 时，取前两行为 0向量，第 3,4行为 α3, α4,对第m行 (m ≥ 5)，γm = xm3α3 + xm4α4. 首先一定有
A = B + C，而 B 的前两行线性无关，可线性表示其余行，则 rank(B) = 2，同理 rank(C) = 2

（4）正确.由条件 I = B −AB = B(I −A)，这说明 B−1 = I −A，从而也有 I = (I −A)B = B −AB，对
比之下就可以发现 AB = BA.�
笔记（3）如果直接用类似于 A = (α1, α2, · · · , αm) = (α1, α2, 0, 0, · · · , 0) + (0, 0, α3, α4, · · · , αm) = B + C，在
一般情况下是不对的.

练习 4.19 (三.线性方程组的解)

♣

当 a为何值时，如下的线性方程组有解？若有解，请求出它的所有解.
x1 − 4x2 + 2x3 = −1

−x1 + 11x2 − x3 = 3

3x1 − 5x2 + 7x3 = a

解对应矩阵为: 
1 −4 2 −1
−1 11 −1 3

3 −5 7 a

→

1 −4 2 −1
0 7 1 2

0 7 1 a+ 3

→

1 −4 2 −1
0 7 1 2

0 0 0 a+ 1



从而线性方程组有解⇔ a = −1，通解为


x1 = 18x2 − 5

x2 = x2

x3 = −7x2 + 2

.

练习 4.20 (四.行列式计算)

♣

计算四阶行列式

∣∣∣∣∣∣∣∣∣∣
a1 − b a2 a3 a4

a1 a2 − b a3 a4

a1 a2 a3 − b a4

a1 a2 a3 a4 − b

∣∣∣∣∣∣∣∣∣∣
.

解我们有: ∣∣∣∣∣∣∣∣∣∣
a1 − b a2 a3 a4

a1 a2 − b a3 a4

a1 a2 a3 − b a4

a1 a2 a3 a4 − b

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
a1 + a2 + a3 + a4 − b a2 a3 a4

a1 + a2 + a3 + a4 − b a2 − b a3 a4

a1 + a2 + a3 + a4 − b a2 a3 − b a4

a1 + a2 + a3 + a4 − b a2 a3 a4 − b

∣∣∣∣∣∣∣∣∣∣
= (a1+a2+a3+a4−b)

∣∣∣∣∣∣∣∣∣∣
1 a2 a3 a4

1 a2 − b a3 a4

1 a2 a3 − b a4

1 a2 a3 a4 − b

∣∣∣∣∣∣∣∣∣∣
= (a1+a2+a3+a4−b)

∣∣∣∣∣∣∣∣∣∣
1 0 0 0

1 −b 0 0

1 0 −b 0

1 0 0 −b

∣∣∣∣∣∣∣∣∣∣
= b3(b−a1−a2−a3−a4)

.

�
笔记本题有其他方法如：原式 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1

0 a1 − b a2 a3 a4

0 a1 a2 − b a3 a4

0 a1 a2 a3 − b a4

0 a1 a2 a3 a4 − b

∣∣∣∣∣∣∣∣∣∣∣∣∣
，在此不详细展开.
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练习 4.21 (五.矩阵求逆)

♣

设 A =


a a+ 1 a+ 2

a+ 1 a+ 2 a

a+ 2 a a+ 1

为三阶方阵，其中 a 6= −1，求 A−1.

解通过伴随矩阵理论:A−1 = 1
det(A)A

∗.
det(A) = a3 + (a+ 1)3 + (a+ 2)3 − 3a(a+ 1)(a+ 2) = 9(a+ 1), A11 = A22 = A33 = −3a− 2, A12 = A23 =

A31 = 1, A13 = A21 = A32 = 3a+ 4.

从而 A∗ =


A11 A12 A13

A21 A22 A23

A31 A32 A33

⇒ A−1 = 1
det(A)A

∗ = 1
9(a+1)


−3a− 2 1 3a+ 4

3a+ 4 −3a− 2 1

1 3a+ 4 −3a− 2

.

练习 4.22 (六.抽象线性空间)

♣

设 n ≤ 2是正整数，而 a1, · · · , an是 C 里 n个互异的数，用 V 表示所有次数小于 n的全体复系数多项式
所构成的C上的线性空间，对于 j = 1, · · · , n，我们令 fj(x) = (x−a1) · · · (x−aj−1)(x−aj+1) · · · (x−an).
（1）证明：f1, · · · , fn 构成 V 的一组基.
（2）对于 j = 1, · · · , n，设 aj = e

i2πj
n = cos( 2πjn ) + isin( 2πjn )，即 a1, · · · , an 是全体 n次单位根，求从基

1, x, · · · , xn−1 到 f1, · · · , fn 的过渡矩阵.
（3）在（2）的条件下，求多项式 1 + x+ · · ·+ xn−1 在 f1, · · · , fn 下的坐标.

�
笔记过渡矩阵的定义可以在书本 P150的例 5.4.3中找到.
解（1）证明分为两部分，dim(V ) = n这一部分较为显然，但需要提及.

另一方面，若 f1, · · · , fn线性相关，则存在不全为 0的λi使得Σn
i=1λifi = 0. 作为多项式有 0 = (Σn

i=1λifi)(ak) =

λkfk(ak)⇒ λk = 0对任意 k成立，矛盾.从而 f1, · · · , fn 线性无关.
结合上述两点，f1, · · · , fn 构成 V 的一组基.
（2）方法一: 设 (f1, f2, · · · , fn)=(1, x, · · · , xn−1)B，其中B = (bij)n×n. 此时会有Σn

i=1x
i−1bij = fj =

xn−1
x−aj

.
从而

xn − 1 = (Σn
i=1x

i−1bij)(x− aj) = xnbnj +Σn−1
i=1 x

i(−ajbi+1,j + bij)− bijaj

对比系数，可以归纳证明 bij = (aj)
−i = (aj)

n−i. 从而

B =


an−11 an−12 · · · an−1n

...
...

. . .
...

a1 a2 · · · an

1 1 · · · 1


方法二: (此方法一般情况下会损失一些分数)
直接对 fj 展开可得:fj = Σn−1

k=0x
n−1−kΣ1≤ai1

<ai2
<···<aik

≤n(−1)kai1ai2 · · · aik ≤ n, (i1, i2, · · · , ik 6= j),于是
就有 bn−k,j = Σ1≤ai1

<ai2
<···<aik

≤n(−1)kai1ai2 · · · aik , (i1, i2, · · · , ik 6= j)

（3）法一:注意到:

1 + x+ x2 + · · ·+ xn−1 =
xn−1

x− 1
= fn

从而坐标为 (0, 0, · · · , 1)T .
法二:记 (1, x, x2, · · · , xn−1) = (f1, f2, · · · , fn)(cij)n×n. 则 xk−1 = Σn

i=1ficik.从而 xk−1

xn−1 = Σn
i=1

cik
x−ai

,两边
乘以 x− ai 并令 x→ ai 就有 cik = 1

na
k−n
i .

当 i 6= n时，Σn
k=1cik = 1

nΣ
n
k=1a

k−n
i = 0,另一方面 1

nΣ
n
k=1a

k−n
n = 1. 从而多项式在这组基下的坐标为

C(1, 1, · · · , 1)T = (0, 0, · · · , 1)T
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.

练习 4.23 (七.秩与相抵)

♣

（1）若 C ∈ Fm×n 是一个行满秩的矩阵，证明一定存在矩阵 D ∈ Fn×m 使得 CD = Im 是单位阵.
（2）若 rank(AB) = rank(A)，证明存在 X 使得 ABX = A.

证明（1）此时存在可逆矩阵P ,Q使得A = P
(
Im O

)
Q，从而 Im = CD有解当且仅当P−1 =

(
Im O

)
Q1 (Q1 =

QD)有解.

实际上只需要取 Q1 =

(
P−1

P ′

)
(P ′任意)即可满足条件，而 D = Q−1Q1，结论成立.

（2）方法一：同（1）设 A = P

(
Ir O

O O

)
Q,则 ABX = A有解等价于

(
Ir O

O O

)
QBX =

(
Ir O

O O

)
Q有解.

此时 r = rank(AB) = rank(

(
Ir O

O O

)
QB).从而记 C =

(
Ir O

)
QB，这是一个行满秩的矩阵.

由（1）的结论，存在 X1 使得 CX1 = Ir，若记 Q =

(
Q11 Q12

Q21 Q22

)
，和 X =

(
X1Q11 X1Q12

)
. 会有：

(
C

O

)
X =

(
C

O

)(
X1Q11 X1Q12

)
=

(
CX1Q11 CX1Q12

O O

)
=

(
Q11 Q12

O O

)
=

(
Ir O

O O

)
Q

. 综上所述结论成立.
方法二:记A = (α1, α2, · · · , αs), AB = (β1, β2, · · · , βt)，那么显然会有< β1, β2, · · · , βt >⊂< α1, α2, · · · , αs >.
结合条件两侧 rank相等，则有 < β1, β2, · · · , βt >=< α1, α2, · · · , αs >,右侧可以由左侧线性表示，从而结

论自然成立.�
笔记以下的内容观点比较 Personal仅供参考：

如果没有记错的话，这张试卷在我那个班级的平均分/中位数大约在 75分左右.最后两个题也确实是有一些
困难的.

对于不那么追求高分的同学来说，这张试卷的前 5题是最好不扣分或者少扣分全款拿下的，毕竟最后几道
题还是看一点考场运气的.何况填空这种一个笔误，判断里一个判断错误都会意味着 5分全丢.
同样，对于追求高分的同学，考前花时间做一点难题固然是好的，不过不需要过拟合（做很多），本人就曾

经因为做太多难题，在期末时因为概念混淆损失很多分数.
最后祝大家期中考试顺利（克猫猫版）！
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第 5章 第五次习题课

5.1 作业题

练习 5.1 (P175, 25 (1))

♣

求下列矩阵的秩，并求出它的行空间、列空间及零空间的一组基：

(1)


3 −2 0 1

−1 −3 2 0

2 0 −4 5

4 1 −2 1


解已知矩阵：

A =


3 −2 0 1

−1 −3 2 0

2 0 −4 5

4 1 −2 1


初等行变换后变为：

−1 −3 2 0

3 −2 0 1

2 0 −4 5

4 1 −2 1

→

−1 −3 2 0

0 −11 6 1

0 −6 0 5

0 −11 6 1

→

−1 −3 2 0

0 −11 6 1

0 0 36
11

49
11

0 0 0 0


故: rank(A) = 3

行空间的一组基为原矩阵的线性无关行：

{(1, 3, 2, 1), (3,−2, 0, 1), (2, 0,−4, 5)}

列空间的一组基对应主元列的原始列向量：


3

−1
2

4

 ,


−2
−3
0

1

 ,


1

2

−4
−2




求解零空间：
由行简化形式得方程组：

x1 − 3x2 + 2x3 = 0

−11x2 + 6x3 + x4 = 0

36x3 − 49x4 = 0

求得通解（令 x4 = t）：

x3 =
2

9
t

x2 =
5

6
t

x1 =
49

36
t

因此：



5.1 作业题

零空间的一组基为：


2
9
5
6
49
36

1


练习 5.2 (P175, 40)

♣

已知 F5 中向量 a1 = (1, 2, 3, 2, 1)T 及 a2 = (1, 3, 2, 1, 2)T，求找一个齐次线性方程组，使得 a1 与 a2 为该
方程组的基础解系。

解设有一个齐次线性方程组：
a1x1 + a2x2 + a3x3 + a4x4 + a5x5 = 0

使得向量
a1 = (1, 2, 3, 2, 1)T , a2 = (1, 3, 2, 1, 2)T

是该方程组的基础解系。
将 a1, a2 作为行向量，构成系数矩阵：

B =

(
1 2 3 2 1

1 3 2 1 2

)
R2−R1→R2−→

(
1 2 3 2 1

0 1 −1 −1 1

)
R1−2R2→R1−→

(
1 0 5 4 −1
0 1 −1 −1 1

)
解该线性方程组，得： x1 = −5x3 − 4x4 + x5

x2 = x3 + x4 − x5

故通解为：
(x1, x2, x3, x4, x5) = (−5x3 − 4x4 + x5, x3 + x4 − x5, x3, x4, x5)

写成向量形式表示基础解系：

= x3(−5, 1, 1, 0, 0) + x4(−4, 1, 0, 1, 0) + x5(1,−1, 0, 0, 1)

故一组基础解系为：
(−5, 1, 1, 0, 0), (−4, 1, 0, 1, 0), (1,−1, 0, 0, 1)

从而构成一个齐次线性方程组： 
−5x1 + x2 + x3 = 0

−4x1 + x2 + x4 = 0

x1 − x2 + x5 = 0

练习 5.3 (P177, 42)

♣

设 V 是所有实函数数全体在实数域上构成的线性空间，判断 V 中下列函数组是否线性相关：
(1) 1, x, sinx；
(2) 1, x, ex；
(3) 1, cos 2x, cos2 x；
(4) 1, x2, (x− 1)3, (x+ 1)3；
(5) cosx, cos 2x, . . . , cos(nx)。

解我们逐项分析每组函数是否线性相关：
(1) 1, x, sinx：
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5.1 作业题

三个函数分别为常数函数、多项式函数和三角函数，分别属于不同类型函数，它们在 R上显然线性无关。
如果需要验证，则直接设出 λ1、λ2、λ3，然后代入四组使得其无解的值就行。

(2) 1, x, ex：
同理，这三者分别为常数函数、多项式函数和指数函数，彼此在函数空间中不属于同一类别，故线性无关。

(3) 1, cos 2x, cos2 x：

cos2 x =
1 + cos 2x

2
,

可得：
2 cos2 x = 1 + cos 2x⇒ 2 cos2 x− cos 2x− 1 = 0

说明三者线性相关。
(4) 1, x2, (x− 1)3, (x+ 1)3：
记住 (x− 1)3 和 (x+ 1)3 展开后分别是 x3 − 3x2 + 3x− 1和 x3 + 3x2 + 3x+ 1。
我们有：

(x+ 1)3 − (x− 1)3 = 6x2 + 2

线性相关。
(5) cosx, cos 2x, . . . , cos(nx)：
不妨设 cosx, cos 2x, . . . , cos(nx)线性相关，则存在一组不全为零的 λ1, λ2, . . . , λn，使得

λ1 cosx+ λ2 cos 2x+ · · ·+ λn cos(nx) = 0, ∀x ∈ R.

则存在某个 λi 6= 0，不妨设 λi 6= 0，可得

cos(ix) = −
∑
j ̸=i

λj

λi
cos(jx).

两边同乘 cos(ix)，得到

cos2(ix) = −
∑
j ̸=i

λj

λi
cos(jx) cos(ix).

对等式两边在区间 [0, 2π]上积分，得到∫ 2π

0

cos2(ix) dx = −
∑
j ̸=i

λj

λi

∫ 2π

0

cos(jx) cos(ix) dx.

根据三角函数的正交性，有 ∫ 2π

0

cos(ix) cos(jx) dx =

0, i 6= j,

π, i = j.

因此，右边所有积分为 0，左边为 ∫ 2π

0

cos2(ix) dx = π 6= 0,

导致矛盾。
故假设不成立，cosx, cos 2x, . . . , cos(nx)线性无关。

练习 5.4 (P177,47)

♣

V = Fn×n 是数域 F 上所有 n阶矩阵构成的线性空间，令W 是数域 F 上所有满足 Tr(A) = 0的 n阶矩
阵的全体。证明：W 是 V 的线性子空间，并求W 的一组基与维数。

解设 V = Fn×n 是所有 n阶矩阵构成的线性空间，其维数为 n2。定义W = {A ∈ Fn×n | Tr(A) = 0}。
（1）证明W 是 V 的线性子空间：
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5.1 作业题

设 A,B ∈W，即 Tr(A) = 0, Tr(B) = 0，λ ∈ F 是任意标量，则：

Tr(A+B) = Tr(A) + Tr(B) = 0 + 0 = 0,

Tr(λA) = λTr(A) = λ · 0 = 0.

故 A+B ∈W , λA ∈W，所以W 是 V 的线性子空间。
（2）求W 的一组基与维数：
由于 Tr(A)是矩阵主对角线元素之和，为了满足 Tr(A) = 0，我们只需从 n2 维的 Fn×n 中减去一条“和为

零”的线性约束。
但由此直接得到维数为 n2 − 1不太严谨。我们可以从基的数量来考察维数。
构造W 的一组基：
对于 i 6= j，Eij 是第 i行第 j 列为 1，其余为 0的矩阵。共 n(n− 1)个，此类矩阵的迹为 0，属于W。
对于主对角线 i = j，我们需要构造 n−1个迹为零的线性无关对角矩阵。例如，定义以下 n−1个对角矩阵：

D1 = E11 − Enn, D2 = E22 − Enn, . . . , Dn−1 = En−1,n−1 − Enn.

这些矩阵彼此线性无关，且每个迹为 1− 1 = 0。
综上，一组基为：

{Eij | i 6= j} ∪ {E11 − Enn, E22 − Enn, . . . , En−1,n−1 − Enn},

共 n(n− 1) + (n− 1) = n2 − 1个，因此，dim(W ) = n2 − 1。

练习 5.5 (P176,41)

♣

判断下列集合关于规定的运算是否构成线性空间：
(1) V 是所有实数对 (x, y)的集合，数域 F = R。定义

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), λ(x, y) = (x, y).

(2) V 是所有满足 f(−1) = 0的实函数的集合，数域 F = R。定义加法为函数的加法，数乘为数与函数
的乘法。

(3) V 是所有满足 f(0) 6= 0的实函数的集合，数域 F = R。定义加法为函数的加法，数乘为数与函数的
乘法。

(4) V 是数域 F 上所有 n阶可逆方阵的全体，加法为矩阵的加法，数乘为矩阵的数乘。

�
笔记我们先回顾一下线性空间的定义：
定义 5.6.1. 设 V 是一个非空集合，F 是一个数域。对 V 中的元素定义两种运算：

1. 加法：对 V 中的任意两个元素 α, β 组成的有序对 (α, β)，存在 V 中唯一的一个元素 γ 与之对应，简记为
α+ β = γ。

2. 数乘：对任意常数 λ ∈ F 及向量 α ∈ V，存在 V 中唯一的一个元素 γ 与之对应，简记为 λα = γ。
加法与数乘运算满足下列运算规律：

(A1) α+ β = β + α对任意 α, β ∈ V 成立；
(A2) (α+ β) + γ = α+ (β + γ)对任意 α, β, γ ∈ V 成立；
(A3) 存在元素 θ ∈ V，使得 α+ θ = θ + α = α，θ称为零元素；
(A4) 对任意 α ∈ V，存在 β ∈ V 使得 α+ β = β + α = 0，记作 −α；
(D1) λ(α+ β) = λα+ λβ；
(D2) (λ+ µ)α = λα+ µα；
(M1) (λµ)α = λ(µα)；
(M2) 1α = α；

则称 V 是数域 F 上的线性空间，简记为 V (F )或 F 上的 V。线性空间中 V 的元素称为向量。
解我们逐项判断各集合是否构成实数域 R上的线性空间：
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5.1 作业题

(1) 否，不是线性空间。
加法 (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)是通常意义下的向量加法；对于数乘：

(x, y) + (x, y) = (2x, 2y) 6= (1 + 1)(x, y) = (x, y),

故不是线性空间。
(2) 是线性空间。
集合 V 是满足 f(−1) = 0的所有实函数的集合。
若 f, g ∈ V，则 f(−1) = g(−1) = 0，则有：

(f + g)(−1) = f(−1) + g(−1) = 0 + 0 = 0,

故 f + g ∈ V；且对任意 λ ∈ R有：

(λf)(−1) = λ · f(−1) = λ · 0 = 0,

故 λf ∈ V，满足加法与数乘封闭性，其他线性空间公理亦满足，故 V 是 R上的线性空间。
(3) 否，不是线性空间。

V 是所有满足 f(0) 6= 0的实函数的集合，若 f ∈ V，则 f(0) 6= 0；但对于任意 λ = 0，有：

(λf)(0) = 0 · f(0) = 0,

即 0 · f /∈ V，不满足数乘封闭性（数乘后函数不在集合中），故 V 不是线性空间。
(4) 否，不是线性空间。

V 是所有 n阶可逆矩阵的集合。设 A,B 都是可逆矩阵，但 A+B 不一定可逆。反例如：

A = I, B = −I, A+B = 0（不可逆）

所以加法不封闭，V 不是线性空间。

练习 5.6 (P176, 44)

♣

设 Fn 是次数小于或等于 n的多项式全体构成的线性空间。
(1) 证明：S = {1, x− 1, (x− 1)2, . . . , (x− 1)n}构成 Fn 的一组基；
(2) 求 S 到基 T = {1, x, . . . , xn}的过渡矩阵；
(3) 求多项式 p(x) = a0 + a1x+ . . .+ anx

n ∈ Fn[x]在基 S 下的坐标。

解 (1)证明 S = {1, x− 1, (x− 1)2, . . . , (x− 1)n}构成 Fn 的一组基：
Fn 是次数小于等于 n的多项式空间，其维数为 n + 1。集合 S 中共有 n + 1个元素，且每个元素都是次数

分别为 0到 n的 (x− 1)k。
我们观察到，集合 T = {1, x, x2, . . . , xn}是 Fn 的一组标准基。由于 S 中元素都可以展开成以 T 中元素为

线性组合的形式，且个数相等，因此只需证明 S 中元素线性无关即可。
设

c0 · 1 + c1(x− 1) + c2(x− 1)2 + · · ·+ cn(x− 1)n = 0,

对所有 x恒成立。
我们可以取 n+ 1个不同的点 x0, x1, . . . , xn ∈ R，将其代入上式，得到如下线性方程组：

1 (x0 − 1) (x0 − 1)2 · · · (x0 − 1)n

1 (x1 − 1) (x1 − 1)2 · · · (x1 − 1)n

...
...

...
. . .

...

1 (xn − 1) (xn − 1)2 · · · (xn − 1)n




c0

c1
...

cn

 =


0

0
...

0

 .

这个系数矩阵是一个以 (xi − 1)为节点的 Vandermonde矩阵。只要所选的 xi 两两不同，那么 (xi − 1)也两
两不同，Vandermonde行列式不为零，因此该矩阵可逆。

故线性方程组只有零解，得到 c0 = c1 = · · · = cn = 0。
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5.1 作业题

因此，S 线性无关，又有 n+ 1个元素，构成 Fn 的一组基。

(2)求 S 到基 T = {1, x, . . . , xn}的过渡矩阵：
我们需将 S 中的每个元素在 T 的坐标下展开，即把每个 (x− 1)k 展开成标准幂级数形式。
注意：

xk = (x− 1 + 1)k =

k∑
j=0

(
k

j

)
(x− 1)j ,

因此第 k列是 xk 在基 S 下的坐标列向量。
构造出的过渡矩阵 P 为：

P =



1 1 1 · · ·
(
n
0

)
0 1 2 · · ·

(
n
1

)
0 0 1 · · ·

(
n
2

)
...

...
...

. . .
...

0 0 0 · · · 1


这是一个上三角矩阵.

(3)求多项式 p(x) = a0 + a1x+ · · ·+ anx
n 在基 S 下的坐标：

我们记 a =


a0

a1
...

an

为 p(x)在 T 下的坐标, P 为第 (2)小问中的过渡矩阵 S → T ,那么有：b = P · a，其中 b

是 p(x)在基 S 下的坐标。

练习 5.7 (P176, 45)

♣

V 是数域 F 上 n阶对称方阵的全体，定义加法为矩阵的加法，数乘为矩阵的数乘。证明：V 是线性空间，
并求 V 的一组基及维数。

解设 V 是数域 F 上所有 n阶对称方阵构成的集合，即

V = {A ∈ Fn×n | AT = A}.

(1)证明 V 是线性空间：
我们验证 V 是否满足线性空间的封闭性和八条运算规则。
加法封闭性：设 A,B ∈ V，则 AT = A,BT = B，于是

(A+B)T = AT +BT = A+B ∈ V.

数乘封闭性：设 λ ∈ F，则
(λA)T = λAT = λA ∈ V.

加法和数乘为矩阵的标准运算，满足所有线性空间的八条公理。因此，V 是 F 上的线性空间。

(2)求 V 的一组基及维数：
设 A = (aij) ∈ V 是任一 n阶对称矩阵，即满足 aij = aji。我们来分析其自由元素的个数：
对角线元素：aii 共 n个，可以任意取；

非对角线元素：aij（i < j）和 aji 由对称性确定为相同，共有
n(n− 1)

2
个独立元素。

因此，V 的维数为：

dimV = n+
n(n− 1)

2
=

n(n+ 1)

2
.
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5.1 作业题

构造一组基：
我们按照对称矩阵结构分类构造：
对每个 1 ≤ i ≤ n，令 Eii 为第 (i, i)元素为 1、其他为 0的矩阵。共 n个，表示对角线方向；
对每对 1 ≤ i < j ≤ n，构造矩阵

Eij + Eji,

其中 Eij 表示第 (i, j)元素为 1、其余为 0的矩阵。这些矩阵是对称的，共
n(n− 1)

2
个。

因此，一组基为：
B = {Eii}ni=1 ∪ {Eij + Eji | 1 ≤ i < j ≤ n},

其大小即为维数
n(n+ 1)

2
。
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5.2 期中复习

5.2 期中复习
复习顺序：

1. 书上基本的定义、定理、证明、例子；
2. 老师布置的作业题（可以对照习题课讲义进行复习）；
3. 往年卷，习题课讲义中的补充题;
4. 其他资料（如线性代数学习指导等）。
注：不要陷在较复杂的证明中，注重定义、定理的理解，基本定理的证明，以及计算过程的准确性。线代

B1的考试更重计算，不要算错吃大亏！！！

5.2.1 复习提纲

5.2.1.1 第一章 向量

命题 1.1.1向量 a, b共线的充要条件是：存在不全为零的实数 λ, µ，使得

λa+ µb = 0.

命题 1.1.2向量 a, b, c共面的充要条件是：存在不全为零的实数 λ, µ, ν，使得

λa+ µb+ νc = 0.

定义 1.1.1设 a1, a2, . . . , an 为一组向量，λ1, λ2, . . . , λn 为实数。称向量

a = λ1a1 + λ2a2 + · · ·+ λnan

为这组向量的一个线性组合。
定义 1.1.2一组向量 a1, a2, . . . , an 称为线性相关，如果存在不全为零的实数 λ1, λ2, . . . , λn 使得

λ1a1 + λ2a2 + · · ·+ λnan = 0.

反之，不是线性相关的一组向量称为线性无关。也就是说，如果上述等式成立，则 λ1 = λ2 = · · · = λn = 0。�
笔记注意这个“不全为零”。
定义 1.3.1两个向量 a与 b的数量积为一个实数，它等于两个向量的模长与两向量夹角的余弦的乘积，记为 a · b。
如果向量 a, b的夹角为 θ，则

a · b = ‖a‖‖b‖ cos θ.

数量积也常称为内积。
命题 1.3.1对向量 a, b, c及实数 λ，我们有

a · b = b · a,

(a+ b) · c = a · c+ b · c,

(λa) · b = λ(a · b) = a · (λb),

a2 := a · a ≥ 0, 等号成立当且仅当a = 0.

定义 1.4.1两个向量 a, b的向量积 a× b为一个向量，其方向与 a, b都垂直，且使 a, b, a× b构成右手系；它的模
等于以 a, b为边的平行四边形的面积，即

‖a× b‖ = ‖a‖‖b‖ sin θ,

其中 θ为 a, b的夹角。
向量的向量积运算具有以下性质：
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5.2 期中复习

命题 1.4.1设 a, b, c为三个向量，λ为实数，则有

a× b = −b× a,

(λa)× b = λ(a× b) = a× (λb),

(a+ b)× c = a× c+ b× c.

给定三个向量 a, b, c，称 (a× b) · c为 a, b, c的混合积。
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5.2 期中复习

5.2.1.2 第二章 线性方程组

1. 高斯消元法
一般地，具有 n个变量 x1, . . . , xn，m个方程组成的线性方程组具有形式：

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

(2.1)

其中，aij 是第 i个方程中第 j 个变量的系数，bi 是第 i个方程的常数项。
如果常数项都为零，则称相应的线性方程组为齐次线性方程组，否则称为非齐次线性方程组。
若将 x1 = c1, . . . , xn = cn代入上述方程等式成立，则称 (c1, . . . , cn)为该方程组的一组解。线性方程组 (2.1)

的解的全体称为该方程组的解集。如果解集非空，则称线性方程组 (2.1)是相容的；否则称该方程组不相容。线
性方程组 (2.1)的系数与常数项构成的数构成的矩形阵列。例如，线性方程组 (2.1)可以表示为矩阵形式：

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm

 (2.2)

称矩阵 (2.2)为线性方程组 (2.1)的增广矩阵，而矩阵左边的m× n系数矩阵部分称为该方程组的系数矩阵。
容易观察到，线性方程组 (2.1)的第 i个方程正好对应矩阵 (2.2)的第 i行。这样对线性方程组做初等变换等

价于对其对应矩阵的行做相同的初等变换。对应矩阵的三个初等行变换为：
1. 互换矩阵的两行；
2. 将某一行乘一个非零常数；
3. 将某行乘一个非零常数加到另一行。

2. 解的性质
概念：通解，特解，零解（平凡解），非平凡解。

定理 2.3.1线性方程组 (2.1)的解的性质如下：
1. 当 dr+1 6= 0时，线性方程组 (2.1)无解；
2. 当 dr+1 = 0且 r = n时，线性方程组 (2.1)有唯一解；
3. 当 dr+1 = 0且 r < n时，线性方程组 (2.1)有多解。
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5.2 期中复习

5.2.1.3 第三章 行列式

定义 3.1.1 n阶方阵 A = (aij)的行列式通常记为

det(A) =

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣
.

当 n = 1时，定义 det(A) = a11；当 n ≥ 2时，递归定义为：

det(A) :=

n∑
i=1

(−1)i+1ai1Mi1 =

n∑
i=1

ai1Ai1, (3.2)

其中Mij 是删去 A的第 i行与第 j 列后得到的 (n− 1)阶子矩阵的行列式，即：

Mij =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1,j−1 a1,j+1 · · · a1n
...

...
...

...

ai−1,1 · · · ai−1,j−1 ai−1,j+1 · · · ai−1,n

ai+1,1 · · · ai+1,j−1 ai+1,j+1 · · · ai+1,n

...
...

...
...

an1 · · · an,j−1 an,j+1 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.3)

Mij 称为元素 aij 的余子式，Aij = (−1)i+jMij 称为 aij 的代数余子式。

定理 3.1.1设 A = (aij)n×n 为 n阶方阵，则对固定的 k（1 ≤ k ≤ n），有：

det(A) =

n∑
i=1

aikAik =

n∑
i=1

(−1)i+kaikMik. (3.4)

即行列式可以按任意列第 k列展开。

定理 3.1.2设 A = (aij)为 n阶方阵，则

det(A) =

n∑
j=1

akjAkj =

n∑
j=1

(−1)k+jakjMkj , 1 ≤ k ≤ n. (3.7)

定义 3.1.2设 A = (aij)n×n 为 n阶方阵，固定 k(1 ≤ k ≤ n)。A的行列式 det(A)可递归定义如下：
当 n = 1时，det(A) = a11；当 n ≥ 2时，

det(A) =

n∑
i=1

(−1)i+kaikMik. (3.11)

定义 3.1.3同上，固定 k(1 ≤ k ≤ n)，有递归定义：

det(A) =

n∑
j=1

(−1)k+jakjMkj . (3.12)

定理 3.2.1行列式具有下列性质：
1. 任意方阵与它的转置方阵的行列式相等；
2. 交换矩阵 A的某两行，所得矩阵 B 满足 det(B) = − det(A)；
3. 将矩阵 A的某一行乘以常数 λ，得 det(B) = λ det(A)；
4. 若某一行是两向量之和，则 det(A)可拆成两行列式之和；
5. 若矩阵某两行成比例，则 det(A) = 0；
6. 将某一行的倍数加到另一行，行列式不变：det(B) = det(A)。
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定义 3.3.1将n个两两不同的正整数 s1, s2, . . . , sn按顺序排成的一个有序数组称为一个排列，记作 s = (s1, s2, . . . , sn)。
满足 s1 < s2 < · · · < sn 的排列称为顺序排列，特别地，排列 (1, 2, . . . , n)称为自然排列。
互换排列中 i、j 位置的两个数 si, sj（i < j）称为一次对换。若满足 si > sj，则称 (si, sj)为一个逆序，s

中所有的逆序对数称为该排列的逆序数，记作 τ(s)。
若逆序数为奇数，称 s为奇排列；
若逆序数为偶数，称 s为偶排列。�

笔记每年必考。务必搞清楚如何计算逆序数！
引理 3.3.1每个排列 s可经由 τ(s)次相邻位置的对换变成从小到大的顺序排列。
定理 3.3.1设 A = (aij)n×n 为 n阶方阵，则

det(A) =
∑

(j1,j2,...,jn)∈Sn

(−1)τ(j1,j2,...,jn)a1j1a2j2 · · · anjn , (3.14)

其中 Sn 为 n个元素的所有排列的集合，τ(j1, j2, . . . , jn)表示该排列的逆序数。

定理 3.4.2（Cramer法则）当系数矩阵 A = (aij)n×n 的行列式不等于零时，线性方程组

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

an1x1 + an2x2 + · · ·+ annxn = bn

有唯一解：

(x1, x2, . . . , xn) =

(
∆1

∆
,
∆2

∆
, . . . ,

∆n

∆

)
,

其中 ∆ = det(A)，∆i 是将 A的第 i列换为常数项列 b所得矩阵的行列式，i = 1, 2, . . . , n。

行列式的计算

例 3.5.3计算 Vandermonde行列式

∆n(a1, a2, . . . , an) =

∣∣∣∣∣∣∣∣∣∣∣

1 a1 a21 · · · an−11

1 a2 a22 · · · an−12

...
...

...
. . .

...

1 an a2n · · · an−1n

∣∣∣∣∣∣∣∣∣∣∣
.

解从行列式的第 n列开始至第 2列，依次把各列减去前一列的 an 倍，得

∆n(a1, a2, . . . , an) =

∣∣∣∣∣∣∣∣∣∣∣

1 a1 − an · · · an−21 (a1 − an)

1 a2 − an · · · an−22 (a2 − an)
...

...
. . .

...

1 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣
.

提取出因子并展开，得

∆n(a1, a2, . . . , an) = (−1)n−1

∣∣∣∣∣∣∣∣∣∣∣

a1 − an · · · an−21 (a1 − an)

a2 − an · · · an−22 (a2 − an)
...

. . .
...

an−1 − an · · · an−2n−1(an−1 − an)

∣∣∣∣∣∣∣∣∣∣∣
.

因子可提出，得到递推式：

∆n(a1, a2, . . . , an) =

n−1∏
i=1

(an − ai) ·∆n−1(a1, a2, . . . , an−1).
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易知 ∆1 = 1，∆2(a1, a2) = a2 − a1。利用数学归纳法可得：

∆n(a1, a2, . . . , an) =
∏

1≤i<j≤n

(aj − ai).

这是非常重要的一个例子。其它关于行列式计算技巧的例子，可以参考作业题和习题课讲义提供的例题。
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5.2.1.4 第四章 矩阵

特殊矩阵：
零矩阵：元素全为 0的矩阵，记作 0或 0。
n阶方阵：n× n的方阵。
单位阵：对角元素为 1，其余元素为 0的 n阶方阵，记作 In 或 I。
数量矩阵：对角元素全为某一固定值 a，其余元素为 0的 n阶方阵，记作 aI。
对角矩阵：除主对角线外其余元素全为 0的方阵，形式为：

A =


a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann

 或 A = diag(a11, a22, . . . , ann).

上三角矩阵：A = (aij)满足 aij = 0对所有 i > j。
下三角矩阵：A = (aij)满足 aij = 0对所有 i < j。
三角矩阵：上三角矩阵或下三角矩阵统称为三角矩阵。
对称矩阵：A = (aij)满足 aij = aji 对所有 i, j。
反对称矩阵：A = (aij)满足 aij = −aji 对所有 i, j。
数域 F 上的矩阵：若矩阵 A的所有元素取自某数域 F，则称为该数域上的矩阵。F 上所有m× n矩阵的
全体记作 Fm×n。

定义 4.2.3 设矩阵 A = (aij)m×n ∈ Fm×n 与 B = (bij)n×p ∈ Fn×p，定义 A 与 B 的乘积为 m × p 阶矩阵
C := (cij)m×p，其中元素

cij =

n∑
k=1

aikbkj = ai1b1j + ai2b2j + · · ·+ ainbnj

是 A的第 i行与 B 的第 j 列对应元素的乘积之和。简记为 C = AB。

注：
1. 只有当 A的列数等于 B 的行数时，A与 B 才可以相乘；
2. 即使 A与 B 是同阶方阵，AB 与 BA也不一定相等。若 AB = BA，则称 A,B 可交换；
3. 两个非零矩阵的乘积可能是零矩阵，即 AB = 0不能推出 A = 0或 B = 0；
4. 在 A的左边乘上对角矩阵相当于将 A的各行分别乘上一个数；在 A的右边乘上对角矩阵相当于将 A的各
列分别乘上一个数；

5. 数量矩阵 A与矩阵相乘的效果等于矩阵的数乘 A；特别地，IA = AI = A, OA = AO = 0。

定理 4.2.2矩阵的乘法运算具有以下性质：
1. 乘法结合律：(AB)C = A(BC)；
2. 乘法单位元：IA = AI = A；
3. 左分配律：(A+B)C = AC +BC；
4. 右分配律：A(B + C) = AB +AC；
5. 数乘结合律：λ(AB) = (λA)B = A(λB)。

定理 4.2.3设 A,B 均为同阶方阵，则
det(AB) = det(A) det(B).

定义 4.2.4设 A是一个 n阶方阵，如果存在 n阶方阵 X 满足 XA = AX = I，则称 A可逆，并称 X 为 A的逆
矩阵，记作 A−1。
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可逆方阵也称为非奇异方阵，不可逆方阵称为奇异方阵。

定理 4.2.4设 A = (aij)n×n 为 n阶方阵，则 A可逆当且仅当 det(A) 6= 0。且当 A可逆时，有

A−1 =
1

det(A)
A∗, (4.11)

其中

A∗ =


A11 A21 · · · An1

A12 A22 · · · An2

...
...

. . .
...

A1n A2n · · · Ann

 , (4.12)

Aij 是元素 aij 关于行列式 det(A)的代数余子式，称 A∗ 为 A的伴随矩阵。�
笔记 2×2或 3× 3矩阵往往用这个办法快速求逆。

定理 4.2.5对任意同阶可逆方阵 A,B，都有：
1. (A−1)−1 = A；
2. (λA)−1 = λ−1A−1, λ 6= 0；
3. (AB)−1 = B−1A−1。

定义 4.2.5将矩阵 A = (aij)m×n 的行列互换，得到的矩阵

AT =


a11 a21 · · · an1

a12 a22 · · · an2
...

...
. . .

...

a1m a2m · · · anm

 (4.13)

称为 A的转置矩阵，记作 AT = (aji)n×m。
将复矩阵 A的每个元素换成它的共轭复数，得到的矩阵

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 (4.14)

称为 A的共轭矩阵，记作 A = (aij)m×n。
n阶方阵 A的对角元之和

tr(A) = a11 + a22 + · · ·+ ann (4.15)

称为 A的迹，记作 tr(A)。

定理 4.2.6矩阵的转置运算具有以下性质：
1. (AT )T = A

2. (A+B)T = AT +BT

3. (λA)T = λAT

4. (AB)T = BTAT

5. (A−1)T = (AT )−1

定理 4.2.7矩阵的迹具有以下性质：
1. tr(A+B) = tr(A) + tr(B)

2. tr(λA) = λ tr(A)

3. tr(AT ) = tr(A)，tr(A) = tr(A)

57



5.2 期中复习

4. tr(AB) = tr(BA)�
笔记第四条是很重要的性质，经常在证明题中使用。

初等变换
三种基本初等行变换：

1. 交换矩阵的两行；
2. 将某行乘以一个非零常数；
3. 将某行的常数倍加到另一行。
类似地，矩阵的列也可以进行三种对应的初等列变换，称为初等列变换。
每类初等变换对应一类初等矩阵。
第一类初等矩阵：交换单位矩阵的第 i行和第 j 行，得

Sij =



1

. . .

0 · · · 1
...

. . .
...

1 · · · 0

. . .

1


(4.17)

第二类初等矩阵：将单位矩阵的第 i行乘以非零数 λ，得

Di(λ) =



1

. . .

λ

. . .

1


(4.18)

第三类初等矩阵：将单位矩阵的第 i行的 λ倍加到第 j 行，得

Tij(λ) =



1

. . .

1

· · · λ · · ·
1


(4.19)

上述三类矩阵称为初等方阵。每一类初等方阵与一类初等变换相对应。

定理 4.3.1对矩阵作初等行变换，等价于在矩阵左边乘上一个相应的初等方阵；对矩阵作初等列变换，等价于在
矩阵右边乘上一个相应的初等方阵。

定理 4.3.2初等方阵具有下列性质：
1. Sij 为对称方阵，且 S−1ij = Sij；
2. Di(λ)为对角方阵，且 Di(λ)

−1 = Di(λ
−1)；

3. Tij(λ)为三角方阵，且 Tij(λ)
−1 = Tij(−λ)。

定理 4.3.3对任意矩阵 A = (aij)m×n，存在一系列m阶初等方阵 P1, P2, . . . , Ps和 n阶初等方阵 Q1, Q2, . . . , Qt，
使得：

Ps · · ·P2P1 ·A ·Q1Q2 · · ·Qt =

(
Ir 0

0 0

)
. (4.20)
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定理 4.3.4对任意矩阵 A = (aij)m×n，存在m阶可逆方阵 P 和 n阶可逆方阵 Q，使得：

PAQ =

(
Ir 0

0 0

)
, (4.21)

其中非负整数 r由 A唯一确定。

定理 4.3.5方阵 A可逆的充要条件是：A可以分解为一系列（有限个）初等方阵的乘积。

定义 4.4.1设 A,B是m× n阶矩阵，如果存在一系列（有限个）初等变换将矩阵 A化成矩阵 B，则称矩阵 A和
B 相抵。

定理 4.4.1设 A,B是m× n阶矩阵，则 A和 B相抵当且仅当，存在m阶可逆方阵 P 和 n阶可逆方阵 Q，使得：

B = PAQ.

矩阵的相抵关系满足以下性质：
1. A与 A本身相抵；
2. 若 A与 B 相抵，则 B 与 A相抵；
3. 若 A与 B 相抵，B 与 C 相抵，则 A与 C 相抵。
满足上述性质的关系称为等价关系，用 ∼表示。

定义 4.4.2设 A是m× n矩阵，公式 (4.21)中的矩阵(
Ir 0

0 0

)
称为 A的相抵标准形。

整数 r称为矩阵 A的秩，记为 rank(A)或 r(A)。若 r = m，称 A为行满秩；若 r = n，称 A为列满秩；特
别地，零矩阵的秩等于 0。

定理 4.4.2设 A,B 是同阶矩阵，则 A与 B 相抵的充要条件是：

rank(A) = rank(B).

定理 4.4.3设 A是m× n阶矩阵，P,Q分别是m,n阶可逆方阵，则：

rank(PAQ) = rank(A).

定理 4.4.4矩阵 A的非零子式的最高阶数等于矩阵 A的秩。

定义 4.4.3设矩阵 A至少有一个 r阶非零子式，且 A的所有 r + 1阶子式都为零，则称 A的秩为 r。�
笔记

1. 一些常见的秩不等式还是有必要知道并且了解怎么证明的，例如例题的 4.4.8, 4.4.9, Sylvester不等式 (设 A

是m× n矩阵，B 是 n× p矩阵，则有 rank(AB) ≥ rank(A) + rank(B)− n. )
2. 证明秩不等式的常见方法：拆分成分块矩阵。
3. 一些常见的特殊矩阵的秩也是考试经常考察的内容，例如幂等阵（例 4.4.11）。
4. 一些分块的技巧非常重要：第四章习题 38、39、41，既经常成为直接要求证明的内容，也经常作为证明题
的一个环节出现。
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5.2.1.5 第五章 线性空间

定义 5.1.1设 F 是数域，定义了线性运算 (5.2)的 n维数组向量全体

Fn := {(a1, a2, . . . , an) | ai ∈ F}

称为 n维数组空间。

定义 5.1.2给定一组 n维数组向量 a1, a2, . . . , am 及一组数 λ1, λ2, . . . , λm，称和式

λ1a1 + λ2a2 + · · ·+ λmam

为 a1, a2, . . . , am的线性组合，λ1, λ2, . . . , λm称为组合系数。如果可以写成 a = λ1a1 + · · ·+ λmam的线性组合，
则称 a可以用 a1, a2, . . . , am 线性表示。

定义 5.1.3给定两个向量组 S = {a1, . . . , am}与 T = {b1, . . . , br}，如果 S 中的每一个向量都可以用向量组 T 线
性表示，则称 S 可以由 T 线性表示。如果两个向量组互相可以线性表示，则称 S 与 T 等价，记为 S ∼ T。

定义 5.1.4设 V ⊆ Fn 为非空向量集合，若满足：
1. 若 a, b ∈ V，则 a+ b ∈ V；
2. 若 a ∈ V, λ ∈ F，则 λa ∈ V，

则称 V 为 Fn 的子空间。

定理 5.1.1设 a1, a2, . . . , am ∈ Fn 是一组给定的 n维数组向量，则集合

〈a1, a2, . . . , am〉 := {λ1a1 + λ2a2 + · · ·+ λmam | λi ∈ F, i = 1, . . . ,m}

是 Fn 的子空间，称为由向量组 a1, a2, . . . , am 生成的子空间。

定理 5.1.2两组向量组 S 与 T 等价当且仅当 〈S〉 = 〈T 〉。

定理 5.2.2设 a1, a2, . . . , am ∈ Fn，则 a1, a2, . . . , am线性相关的充要条件是存在不全为零的常数 λ1, . . . , λm，使
得

m∑
i=1

λiai = λ1a1 + λ2a2 + · · ·+ λmam = 0.

定理 5.2.3设向量组 S 是向量组 T 的一个子集。那么，如果 S 线性相关，则 T 也线性相关；反之，如果 T 线性
无关，则 S 也线性无关。

定理 5.2.4. 设 ai = (ai1, ai2, . . . , ain) ∈ Fn, i = 1, 2, . . . ,m。用 A表示以 a1, a2, . . . , am 为行构成的 m × n阶矩
阵，则 a1, a2, . . . , am 线性相关当且仅当，关于 λ1, λ2, . . . , λm 的齐次线性方程组

AT


λ1

...

λm

 = 0

有非零解。

推论 5.2.1. 设 a1, a2, . . . , am ∈ Fn 是一组 n维向量，则：
1. 若m > n，则 a1, a2, . . . , am 必然线性相关；
2. 若m = n，则 a1, a2, . . . , am 线性相关当且仅当 det(A) = 0。
总结：下列说法等价：

1. n维向量组 a1, a2, . . . , am 线性相关；
2. 某个 ai 是其它向量的线性组合（这里m ≥ 2）；
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3. 关于 λ1, λ2, . . . , λm 的线性方程组

λ1a1 + λ2a2 + · · ·+ λmam = 0

有非零解。

定义 5.3.1. 设 S 是一组数组向量，S1是 S 的子向量组。若 S1线性无关，且对任意向量 a ∈ S \ S1，S1 ∪ {a}线
性相关，则称 S1 是 S 的极大无关组。�
笔记这个定义非常重要：当证明有关极大无关组的等价结论的时候，请从最原始的定义出发证明。

定理 5.3.1. 设 a1, a2, . . . , am ∈ Fn为一组列向量，A = (a1, a2, . . . , am)是以 a1, a2, . . . , am为列构成的 n×m阶
矩阵，A经一系列的初等行变换变为矩阵 B = (b1, b2, . . . , bm)，则：

1. a1, a2, . . . , am 线性相关（无关）当且仅当 b1, b2, . . . , bm 线性相关（无关）；
2. 若 ai1 , ai2 , . . . , air 为 a1, a2, . . . , am的极大无关组，当且仅当 bi1 , bi2 , . . . , bir 为 b1, b2, . . . , bm的极大无关组。
这里 1 ≤ i1 < · · · < ir ≤ m。

定理 5.3.2. 一组向量组与它的任何一组极大无关组等价。

推论 5.3.1. 向量组的任何两个极大无关组彼此等价。

定理 5.3.3. 两个分别线性无关向量组 {a1, a2, . . . , ar}和 {b1, b2, . . . , bs}等价，则 r = s。

推论 5.3.2. 设 ai1 , ai2 , . . . , air 和 aj1 , aj2 , . . . , ajs 分别为 a1, a2, . . . , am 的两个极大无关组，则 r = s。

定义 5.3.2. 向量组 {a1, a2, . . . , am}的极大无关组元素的个数称为该向量组的秩，记为 rank(a1, a2, . . . , am)，或
r(a1, a2, . . . , am)。

定理 5.3.4. 设向量 a1, a2, . . . , am ∈ Fn，则有：
1. a1, . . . , am 线性无关，当且仅当 r(a1, . . . , am) = m；
2. a1, . . . , am 线性相关，当且仅当 r(a1, . . . , am) < m；
3. 若 {b1, . . . , bs}可以用 {a1, . . . , ar}线性表示，则 r(b1, . . . , bs) ≤ r(a1, . . . , ar)；
4. 若 {b1, . . . , bs}与 {a1, . . . , ar}等价，则 r(b1, . . . , bs) = r(a1, . . . , ar)；
5. 向量 b可表示成 {a1, . . . , am}的线性组合，当且仅当 r(a1, . . . , am) = r(a1, . . . , am, b)。

定理 5.3.5. 任何矩阵的行秩等于它的列秩，等于该矩阵的秩。

推论 5.3.3. n阶方阵 A可逆当且仅当 rank(A) = n，当且仅当 A的行向量线性无关，等价于 A的列向量线性无
关。

推论 5.3.4. 若 rank(A) = r，则 A的不等于零的 r阶子式所在线（列）构成的行（列）向量的极大无关组。
定理 5.4.1. 设 V 是 Fn 的子空间，则存在线性无关的向量组 a1, a2, . . . , ar 使得

V = 〈a1, a2, . . . , ar〉.

定义 5.4.1. 设 V ⊆ Fn 为子空间，V 中一组向量 {a1, a2, . . . , ar}称为 V 的一组基，如果它满足：
1. 对任意向量 a ∈ V，a可表示成 a1, a2, . . . , ar 的线性组合

a = x1a1 + x2a2 + · · ·+ xrar;

2. a1, a2, . . . , ar 线性无关。
称 (x1, x2, . . . , xr)为向量 a在基 {a1, a2, . . . , ar}下的坐标。

定义 5.4.2. 设 V ⊆ Fn 为子空间，称 V 的一组基的向量个数为 V 的维数，记为 dimV = rank(V )。
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5.2 期中复习

过渡矩阵，坐标变换公式
设 Fn 有两组基

a1,a2, . . . , an 和 b1,b2, . . . ,bn

设两组基之间的关系如下式确定： 

b1 = t11a1 + t21a2 + · · ·+ tn1an

b2 = t12a1 + t22a2 + · · ·+ tn2an
...

bn = t1na1 + t2na2 + · · ·+ tnnan

上述式子可以写成矩阵形式：
(b1,b2, . . . ,bn) = (a1,a2, . . . , an)T (5.11)

其中过渡矩阵 T 为

T =


t11 · · · t1n
...

. . .
...

tn1 · · · tnn

 (5.12)

称 T 为从基 a1, . . . , an 到 b1, . . . ,bn 的过渡矩阵。由于基是线性无关的向量组，T 是可逆矩阵，且有：

(a1, . . . , an) = (b1, . . . ,bn)T
−1 (5.13)

设向量v ∈ Fn在基a1, . . . , an下的坐标为x = (x1, . . . , xn)
T，在基b1, . . . ,bn下的坐标为y = (y1, . . . , yn)

T，
则由

v = (a1, . . . , an)x = (b1, . . . ,bn)y = (a1, . . . , an)Ty

可得坐标变换公式：
y = T−1x (5.14)

�
笔记非常非常重要的两个公式。
定理 5.4.2. n维数组空间 Fn 中的下列结论成立。

1. 设 V ⊂ Fn 为 r维子空间，则 V 中任意 r + 1个向量线性相关。
2. 设 V 为 r维子空间，则 V 中任意 r个线性无关的向量为 V 的一组基。
3. 设 U 与 V 为 Fn 的子空间，且 U ⊆ V，则 dimU ≤ dimV。
4. 设 U 与 V 为 Fn 的子空间，且 U ⊆ V，若 dimU = dimV，则 U = V。

定理 5.4.3. 设 V ⊂ Fn 为 r 维子空间，a1, a2, . . . , as ∈ V 是 s(s < r) 个线性无关的向量。则存在 V 中的向量
as+1, . . . , ar，使得 a1, a2, . . . , ar 构成 V 的一组基。称 a1, a2, . . . , ar 为线性无关组 a1, a2, . . . , as 的一组扩充基。

定理 5.5.1. 设 A ∈ Fm×n 为m× n阶矩阵，b ∈ Fm 为m维列向量，则线性方程组

Ax = b

有解的充要条件是 rank(A) = rank(A, b)。线性方程组有唯一解的充要条件是 rank(A) = rank(A, b) = n。

推论 5.5.1. 齐次线性方程组
Ax = 0

有非零解的充要条件是 rank(A) < n。特别地，若A为 n阶方阵，则齐次线性方程组有非零解当且仅当 det(A) =

0。
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5.2 期中复习

齐次线性方程组解集的结构
定理 5.5.2. 齐次线性方程组 (5.16)的解集 V 是 Fn的子空间，并且 dimV = n− r(A)。称 V 为矩阵 A的零空间，
记为 N (A)。

推论 5.5.2.
dim(C(A)) + dim(N (A)) = n.

齐次线性方程组 (5.16)的解集 V 也称为解空间。解空间的一组基称为齐次线性方程组的一个基础解系。

非齐次线性方程组解集的结构
考虑非齐次线性方程组 (5.15)的解集，记

W = {x ∈ Fn | Ax = b}.

定理 5.5.3. 设 V,W 分别由 (5.17), (5.18)定义，则有

W = x0 + V := {x0 +α | α ∈ V },

其中 x0 是 Ax = b的一个特解。�
笔记线性方程组解集结构的这两个定理都是考察重点，也是期中卷老熟人了。一般都会有至少一题要解一个线
性方程组。
这类题目注重计算准确性和解答规范性：首先矩阵做初等变换，解出 rank（确定解空间维数），然后解出基

础解系和特解，最后写成通解形式。

一般线性空间

定义 5.6.1. 设 V 是一个非空集合，F 是一个数域。对 V 中的元素定义两种运算：
1. 加法：对 V 中的任意两个元素 α, β，组成的有序对 (α, β)，存在 V 中唯一的一个元素与之对应，记为 α+β；
2. 数乘：对任意数 λ ∈ F 及向量 α ∈ V，存在 V 中唯一的一个元素与之对应，记为 λα = γ。

加法与数乘运算满足下列运算规律：
(A1) α+ β = β + α，对任意 α, β ∈ V 成立；
(A2) (α+ β) + γ = α+ (β + γ)对任意 α, β, γ ∈ V 成立；
(A3) 存在 θ ∈ V，使得 α+ θ = θ + α = α，对任意 α ∈ V 成立，称为零元，记为 θ；
(A4) 对任意 α ∈ V，存在 β ∈ V 使得 α+ β = β + α = θ，称为负元，记为 −α；
(D1) λ(α+ β) = λα+ λβ 对任意 λ ∈ F 及 α, β ∈ V 成立；
(D2) (λ+ µ)α = λα+ µα对任意 λ, µ ∈ F 及 α ∈ V 成立；
(M1) λ(µα) = (λµ)α对任意 λ, µ ∈ F 及 α ∈ V 成立；
(M2) 1 · α = α对任意 α ∈ V 成立。
则称 V 是数域 F 上的线性空间，简称为 V (F )或 V。线性空间中的元素称为向量。�
笔记这八条需要记住。实际上记忆并不复杂：A：加法交换律、结合律，零元，负元；D：乘法分配律 *2；M：
乘法结合律，单位元。

线性空间的基本性质：
零向量唯一：若 θ1 与 θ2 都为零向量，则 θ1 + θ2 = θ1 = θ2；
负向量唯一：设 β1, β2 均为 α的负向量，则 β1 + θ = β1 + (α+ β2) = (β1 + α) + β2 = θ + β2 = β2；
0α = θ，(−1)α = −α，λθ = θ；
λα = θ当且仅当 λ = 0或 α = θ。

定义 5.6.2. 设 V 是数域 F 上的线性空间，W 是 V 的非空子集。如果W 对于线性空间 V 的加法与数乘运算保
持封闭，即
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5.2 期中复习

1. 对任意 α, β ∈W，有 α+ β ∈W；
2. 对任意 λ ∈ F, α ∈W，有 λα ∈W；

则称W 是 V 的子空间。

定义 5.6.3. 设 V 是数域 F 上的线性空间，S ⊂ V 是非空集合，则集合

〈S〉 = {λ1α1 + λ2α2 + · · ·+ λmαm | λi ∈ F, αi ∈ S}

是一个子空间，称为 V 的生成子空间，S 称为生成子空间的生成元。

定义 5.6.4. 设 V 是数域 F 上的线性空间，给定 V 中的一组向量 S = {α1, α2, . . . , αm}及一组数 λ1, λ2, . . . , λm ∈
F，称和式

λ1α1 + λ2α2 + · · ·+ λmαm

为向量组 S的线性组合，λ1, . . . , λm称为组合系数。如果 α可以写成 S的线性组合，则称 α可以用 S线性表示。

定义 5.6.5. 设 V 是数域 F 上的线性空间。称向量组 T = {β1, . . . , βr}可以由向量组 S = {α1, . . . , αm}线性表示，
如果对于每个 i = 1, . . . , r，βi可以用 S 的线性组合表示。如果向量组 S 与 T 互相线性表示，则称 S 与 T 等价。

定理 5.6.1. 设 S 是线性空间 V 中的向量组，则：
1. T 线性表示 S，当且仅当 〈T 〉 ⊇ 〈S〉；
2. S 线性表示 T，当且仅当 〈S〉 ⊇ 〈T 〉；
3. S ∼ T，当且仅当 〈S〉 = 〈T 〉；
4. U ∼ T 且 T ∼ S，则 U ∼ S。

定义 5.6.6. 设 V 是数域 F 上的线性空间，S 是其中一组向量。当 |S| ≥ 2表示 S 中元素个数不少于 2，如果其
中某个向量能用其它向量线性表示，则称 S 线性相关；否则称线性无关。特别地，一个向量组的向量线性相关，
当且仅当该向量为零向量。

定理 5.6.2. 设 α1, . . . , αm 是线性空间 V 中的一组向量，可以列出等价命题：
1. α1, . . . , αm 线性相关；
2. 存在不全为零的 λ1, . . . , λm ∈ F，使得

∑m
i=1 λiαi = 0；

3. 向量 αm 可线性表示为 α1, . . . , αm−1 的线性组合；
4. 存在 i，使得 αi =

∑
j≠i λjαj；

5. 存在 α ∈ 〈α1, . . . , αm〉，使得 〈α1, . . . , αm〉 = 〈α1, . . . , α̂, . . . , αm〉。

定义 5.6.7. 设 S是 V 中的向量组，S1是 S的线性无关子集，且对任意 α ∈ S \ S1，S1 ∪ {α}线性相关，则称 S1

是 S 的极大无关组。

定理 5.6.3. 向量组的极大无关组个数相同，称为向量组的秩。

定理 5.6.4. 向量组 S 的子集 S1 是 S 的极大无关组；

定理 5.6.5. 向量组 S 可以由 T 线性表示，则 rank(S) ≤ rank(T )。

推论 5.6.2. 向量组的任何两个极大无关组彼此等价。

定义 5.6.8. 向量组的极大无关组的向量个数称为向量组的秩，记为 rank(S)或 r(S)。

定理 5.6.5. 设 S, T 是线性空间 V 中的向量组，则有如下结论：
1. 线性无关当且仅当 rank(S) = |S|；
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2. 线性相关当且仅当 rank(S) < |S|；
3. 若 S ∼ T，则 rank(T ) = rank(S)；
4. 若 T 可以用 S 线性表示，且 T 线性无关，则 T ⊆ S。

定义 5.6.9. 设 V 是数域 F 上的线性空间，S 是 V 中一组线性无关向量。若 V 中任意向量都能表示成 S 的线性
组合，则称 S为 V 的一组基。若 S是有限的，则 V 称为有限维线性空间，S中元素个数为线性空间的维数，记
为 dimV。不是有限维的线性空间称为无限维线性空间，其维数为无穷大。设基 S = {α1, . . . , αn}是有限的，则
任意向量 α ∈ V 可以唯一地表示成线性组合

α = λ1α1 + λ2α2 + · · ·+ λnαn.

称 (λ1, . . . , λn)为向量 α在基下的坐标。

定理 5.6.7. 设 V 是数域 F 上的有限维线性空间。则存在线性无关向量组 a1, a2, . . . , an ∈ V 使得

V = 〈a1, a2, . . . , an〉.

定理 5.6.8. 设 V 是数域 F 上的 n维线性空间，则有：
1. V 中任意 n+ 1个向量线性相关；
2. V 中任意 n个线性无关向量为一组基；
3. 设 a1, a2, . . . , ar ∈ V 是 r(< n)个线性无关的向量，则存在 V 中的向量 ar+1, . . . , an 使得 a1, a2, . . . , an 构
成 V 的一组基。称 a1, a2, . . . , an 为线性无关组 a1, a2, . . . , ar 的一组扩充基。
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5.2.1.6 总体梳理

1. 向量
向量共线、共面条件的等价表示
向量的线性组合、线性相关与线性无关
数量积（内积）定义及性质，向量积（叉积）与混合积定义及计算公式

2. 线性方程组
线性方程组的矩阵表示（增广矩阵、系数矩阵）
初等行变换与高斯消元法
解的结构
解集的结构与零空间（解空间）维数

3. 行列式
行列式的定义（三种：余子式，代数余子式，全部展开）
行列式的基本性质
逆序数
Cramer法则与解的表示
Vandermonde行列式

4. 矩阵
各类特殊矩阵（零矩阵、单位矩阵、对角、三角、对称等）
矩阵乘法
可逆矩阵与逆矩阵计算（伴随矩阵）
初等变换、初等矩阵
矩阵的迹、秩，性质
矩阵的相抵，相抵标准型
秩的等价判定与非零子式的阶数

5. 线性空间
数组空间，数组空间的子空间与生成空间
向量组的线性相关性与等价
极大无关组，向量组的秩
向量空间的基与维数
过渡矩阵与坐标变换公式（很重要）
解空间、零空间、列空间与维数关系（也很重要）
一般线性空间的八条公理与基本性质

在上述基本知识的基础上，掌握作业题，熟练各种计算流程，再适量刷原题，复习就已经很完备了。
祝考试顺利！
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第 6章 第六次习题课

6.1 习题解答

练习 6.1 (P212 18)

♣

(1)若 A2 = I，证明：A的特征值只能是 ±1；
(2)设 n阶实方阵 A满足 AT = −A，证明 A的特征值为零或纯虚数。

解 (1)设 λ是矩阵 A的一个特征值，对应的特征向量为 x 6= 0，则有：

Ax = λx

两边同时左乘 A，得：
A2x = A(λx) = λ(Ax) = λ2x

但由题设 A2 = I，所以：
A2x = Ix = x

由此得到：
λ2x = x⇒ (λ2 − 1)x = 0

由于 x 6= 0，所以 λ2 − 1 = 0，即 λ = ±1。
因此 A的特征值只能是 ±1。

(2)设 A是实反对称矩阵，即 AT = −A。设 λ是 A的一个特征值，对应的复特征向量为 x 6= 0，则：

Ax = λx

对上式两边取共轭转置，有：
x∗A∗ = λ∗x∗ = −x∗A

所以：
x∗Ax = λx∗x

另一方面，也有：
x∗Ax = −x∗A∗x = −(Ax)∗x = −λx∗x

因此：
λx∗x = −λx∗x⇒ (λ+ λ)x∗x = 0

由于 x∗x > 0，所以 λ+ λ = 0，即 λ是纯虚数或零。
因此，A的特征值为零或纯虚数。

练习 6.2 (P212 19)

♣

设 λ1, λ2是方阵 A的两个不同的特征值，x1,x2是分别属于 λ1, λ2的特征向量。证明：x1 + x2不是 A的
特征向量。

解因为 x1 是 λ1 对应的特征向量，x2 是 λ2 对应的特征向量，故有：

Ax1 = λ1x1, Ax2 = λ2x2

考虑向量 x1 + x2 被 A作用后的结果：

A(x1 + x2) = Ax1 +Ax2 = λ1x1 + λ2x2



6.1 习题解答

若 x1 + x2 是 A的特征向量，则存在某个标量 λ使得：

A(x1 + x2) = λ(x1 + x2)

即：
λ1x1 + λ2x2 = λx1 + λx2 = λ(x1 + x2)

移项得：
(λ1 − λ)x1 + (λ2 − λ)x2 = 0

由于 λ1 6= λ2，且 x1,x2是不同特征值对应的特征向量，因此线性无关。由线性无关性知，系数必须同时为
0，才能使其线性组合为零向量，即：

λ1 − λ = 0, λ2 − λ = 0⇒ λ1 = λ2

这与题设 λ1 6= λ2 矛盾。
故 x1 + x2 不是 A的特征向量。

练习 6.3 (P212 20)

♣

设 n阶方阵 A = (aij)的全部特征值为 λi (i = 1, 2, . . . , n)，证明：
n∑

i=1

λ2
i =

n∑
i,j=1

aijaji.

解矩阵 A的特征值的平方和
∑n

i=1 λ
2
i 等于 tr(A2)，即矩阵 A2 的迹。因为迹不变性，有：

n∑
i=1

λ2
i = tr(A2)

另一方面，A2 的 (i, i)元素为：

(A2)ii =

n∑
k=1

aikaki

所以：

tr(A2) =

n∑
i=1

(A2)ii =

n∑
i=1

n∑
k=1

aikaki

将两个求和指标统一命名为 i, j，可得：
n∑

i=1

λ2
i =

n∑
i=1

n∑
j=1

aijaji

即证得所需结论：
n∑

i=1

λ2
i =

n∑
i,j=1

aijaji

练习 6.4 (P212 22)

♣

求三阶可逆方阵 P 使得：

P


1 0 0

0 2 0

0 0 3

P−1 =


3 0 0

0 1 0

0 0 2

 .

解设 A =


1 0 0

0 2 0

0 0 3

，B =


3 0 0

0 1 0

0 0 2

。
题目等价于：求可逆矩阵 P 使得 PAP−1 = B，即 A与 B 相似。由于 A和 B 都是对角阵，我们可以取 P

68



6.1 习题解答

为把 A对角元素顺序换成 B 对角元素顺序的置换矩阵。
观察可知：从 A = diag(1, 2, 3)变为 B = diag(3, 1, 2)，我们只需将第 1、2、3行分别换成第 2、3、1行：
因此 P 可取为：

P =


0 0 1

1 0 0

0 1 0

 , P−1 =


0 1 0

0 0 1

1 0 0


验证：

PAP−1 =


0 0 1

1 0 0

0 1 0



1 0 0

0 2 0

0 0 3



0 1 0

0 0 1

1 0 0

 =


3 0 0

0 1 0

0 0 2

 = B

故此 P 是满足条件的可逆矩阵。

练习 6.5 (P212 29(4))

♣

判断矩阵 A =


2 1 1

1 2 1

1 1 2

是否可对角化？若可以，试求变换矩阵 T，使得 T−1AT 为对角矩阵。

解我们先计算矩阵 A的特征值。
计算特征多项式：

det(λI −A) =

∣∣∣∣∣∣∣∣
λ− 2 −1 −1
−1 λ− 2 −1
−1 −1 λ− 2

∣∣∣∣∣∣∣∣
令 x = λ− 2，则上式等于： ∣∣∣∣∣∣∣∣

x −1 −1
−1 x −1
−1 −1 x

∣∣∣∣∣∣∣∣ = x3 − 3x− 2

分解该多项式：尝试代入 x = −1得：

(−1)3 − 3(−1)− 2 = −1 + 3− 2 = 0

说明 x = −1是一个根，用多项式除法除出因式：

x3 − 3x− 2 = (x+ 1)(x2 − x− 2) = (x+ 1)(x− 2)(x+ 1)

所以 x = −1 (重根), x = 2，换回 λ = x+ 2得特征值：

λ = 1 (重根), λ = 4

接下来分别求对应的特征向量：
1. 对于 λ = 4，解 (A− 4I)x = 0，有：

−2 1 1

1 −2 1

1 1 −2

x = 0⇒可得特征向量 v1 =


1

1

1


2. 对于 λ = 1，解 (A− I)x = 0，有：

1 1 1

1 1 1

1 1 1

x = 0⇒秩为 1，解空间维数为 2
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6.1 习题解答

因此 λ = 1对应两个线性无关特征向量，例如：

v2 =


1

−1
0

 , v3 =


1

0

−1


于是矩阵 T 可取为：

T =


1 1 1

1 −1 0

1 0 −1


则：

T−1AT =


4 0 0

0 1 0

0 0 1


因此 A可对角化，变换矩阵为 T。

练习 6.6 (p211 4)

♣
求 R2 中如下线性变换 A：A沿方向 (2, 1)拉伸 2倍，沿方向 (1,−2)压缩 2倍。

解设线性变换 A在标准基下的矩阵为

A =

(
a b

c d

)
A沿方向 (2, 1)拉伸 2倍，即

A

(
2

1

)
= 2

(
2

1

)
这给出方程组 2a+ b = 4

2c+ d = 2

A沿方向 (1,−2)压缩 2倍，即

A

(
1

−2

)
=

1

2

(
1

−2

)
这给出方程组 a− 2b = 1

2

c− 2d = −1

联立以上四个方程，解得 

a =
17

10

b =
3

5

c =
3

5

d =
4

5

所以，A的矩阵为

A =

17

10

3

5
3

5

4

5


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6.1 习题解答

练习 6.7 (p211 11)

♣

给定 R3 中的线性变换 A(x, y, z)T = (2x+ y − z, x+ 2y + z, 4x+ 5y + z)T。求 A的像空间与核空间的
维数及一组基。

解令 A(x, y, z)T = A


x

y

z

，可将 A写成矩阵形式：

A =


2 1 −1
1 2 1

4 5 1


第一步：求像空间（列空间）
对矩阵 A作初等行变换化为行简化阶梯形矩阵：

2 1 −1
1 2 1

4 5 1

 R1↔R2−→


1 2 1

2 1 −1
4 5 1

 R2−2R1, R3−4R1−→


1 2 1

0 −3 −3
0 −3 −3

 R3−R2−→


1 2 1

0 −3 −3
0 0 0


所以秩为 2，像空间维数为 2，从原矩阵 A中取出前两列作为一组基：

像空间维数为2, 一组基为



2

1

4

 ,


1

2

5




第二步：求核空间

求解齐次线性方程 A


x

y

z

 = 0，对应矩阵：


1 2 1

0 −3 −3
0 0 0

⇒
x+ 2y + z = 0

−3y − 3z = 0
⇒ y = −z, x = z

令 z = t，得解空间： 
x

y

z

 = t


1

−1
1


因此核空间维数为 1，一组基为： 


1

−1
1




结论：
像空间维数为 2，一组基为： 


2

1

4

 ,


1

2

5



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6.1 习题解答

核空间维数为 1，一组基为： 


1

−1
1




练习 6.8 (p211 13(4))

♣

求矩阵

A =


3 −2 1

2 −2 2

3 −6 5


的全部特征值和特征向量。

解
矩阵 A− λI 为：

A− λI =


3− λ −2 1

2 −2− λ 2

3 −6 5− λ


计算行列式 det(A− λI)：

det(A− λI) = (3− λ) · det

(
−2− λ 2

−6 5− λ

)
+ 2 · det

(
2 2

3 5− λ

)
+ 1 · det

(
2 −2− λ

3 −6

)
= (3− λ)

[
(−2− λ)(5− λ) + 12

]
+ 2
[
2(5− λ)− 6

]
+
[
− 12 + 3(2 + λ)

]
= (3− λ)(λ2 − 3λ+ 2) + 2(4− 2λ) + (−6 + 3λ)

= −λ3 + 6λ2 − 12λ+ 8.

特征方程为：
−λ3 + 6λ2 − 12λ+ 8 = 0 ⇒ (λ− 2)3 = 0.

因此，矩阵 A的特征值为三重根：
λ1 = λ2 = λ3 = 2 .

对 λ = 2，解齐次方程组 (A− 2I)x = 0，其中：

A− 2I =


1 −2 1

2 −4 2

3 −6 3

 .

矩阵 A− 2I 的秩为 1，解空间维度为 2。通过行化简得基础解系：

v1 =


2

1

0

 , v2 =


−1
0

1

 .

矩阵 A的全部特征值为 2 （三重），对应的特征向量为：

x = k1


2

1

0

+ k2


−1
0

1

 , k1, k2 不同时为零.
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6.1 习题解答

练习 6.9 (p211 15)

♣设 A是可逆方阵。证明：若 λ是 A的一个特征值，则 λ−1 是 A−1 的特征值，且对应的特征向量相同。

解设 λ是 A的特征值，x 6= 0为对应的特征向量，即：

Ax = λx

两边同时左乘 A−1，得：
A−1Ax = A−1λx⇒ x = λA−1x

两边同除 λ，得：
A−1x = λ−1x

所以 λ−1 是 A−1 的特征值，且特征向量仍为 x。

练习 6.10 (p211 16)

♣

设 A为方阵，f(λ)为多项式。证明：如果 λ0是 A的特征值，则 f(λ0)是 f(A)的特征值；且如果 x是属
于 λ0 的特征向量，则 x也是矩阵 f(A)的属于特征值 f(λ0)的特征向量。

解设 λ0 是 A的特征值，x 6= 0是其对应的特征向量，即：

Ax = λ0x

设 f(λ)是多项式：
f(λ) = a0 + a1λ+ a2λ

2 + · · ·+ anλ
n

则 f(A)为：
f(A) = a0I + a1A+ a2A

2 + · · ·+ anA
n

作用在 x上：
f(A)x = a0x+ a1Ax+ a2A

2x+ · · ·+ anA
nx

由于 Akx = λk
0x，所以：

f(A)x =
(
a0 + a1λ0 + a2λ

2
0 + · · ·+ anλ

n
0

)
x = f(λ0)x

因此，f(λ0)是 f(A)的特征值，对应的特征向量仍为 x。

练习 6.11 (p211 17)

♣
设三阶方阵 A的特征多项式为 pA(λ) = (λ− 1)2(λ− 2)。求方阵 3A+ 2I 的特征值与行列式。

解由特征多项式 pA(λ) = (λ− 1)2(λ− 2)可知，A的特征值为：

λ1 = 1 (重数 2), λ2 = 2

设 λ是 A的特征值，对应的特征向量为 x，即：

Ax = λx⇒ 3Ax = 3λx⇒ (3A+ 2I)x = (3λ+ 2)x

因此，3A+ 2I 的特征值为：

3 · 1 + 2 = 5 (重数 2), 3 · 2 + 2 = 8

所以 3A+ 2I 的特征值为 5（重数 2），8（重数 1）。
接下来计算 3A+ 2I 的行列式，等于其所有特征值的乘积：

det(3A+ 2I) = 52 · 8 = 25 · 8 = 200

结论：
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6.2 补充题

-特征值：5（重数 2），8（重数 1）；-行列式：det(3A+ 2I) = 200

6.2 补充题

练习 6.12

♣

设 A是有限维线性空间 V 上的线性变换。求证：

rankA− rankA2 = dim(kerA ∩ ImA)

解考虑 A在 ImA上的限制映射：
A|ImA : ImA → V, α 7→ A(α)

由秩-零化度公式可得：
dimker(A|ImA) = dim ImA− dim Im(A|ImA) (1)

又由于：
ker(A|ImA) = kerA ∩ ImA, dim ImA = rankA

且：
Im(A|ImA) = A(ImA) = A(A(V )) = A2(V ), dimA2(V ) = rankA2

代入公式 (1)得：
dim(kerA ∩ ImA) = rankA− rankA2

如所欲证。 □

练习 6.13

♣

设 n ≥ 2，V = Fn×n，定义线性变换 τ : X 7→ XT，即将每个矩阵 X 映射到其转置 XT。求 τ 的特征值
和特征向量。τ 是否可对角化？

解对任意 X ∈ V，有：
τ2(X) = (XT )T = X ⇒ τ2 = 1V

说明 τ 是 V 上的一个幂等变换，因此 τ 的特征值 λ满足：

τ(X) = λX, ⇒ X = τ2(X) = λ2X ⇒ λ2 = 1⇒ λ = ±1

即 τ 的所有特征值为 λ = 1和 λ = −1。
下面讨论各特征空间：
-若 τ(X) = X，即XT = X，说明X 是对称矩阵。-若 τ(X) = −X，即XT = −X，说明X 是斜对称矩阵。
因此，τ 的特征空间可描述为：-特征值 1：对应所有对称矩阵；-特征值 −1：对应所有斜对称矩阵。
又因为任意矩阵 X ∈ Fn×n 都可以唯一地分解为：

X =
1

2
(X +XT ) +

1

2
(X −XT )

其中 1
2 (X +XT )是对称矩阵， 1

2 (X −XT )是斜对称矩阵，因此 V 被两个特征空间直接和分解，说明 τ 是可对
角化的。

进一步，设：
{Eii,

1
2 (Ekj + Ejk),

1
2 (Ekj − Ejk) | 1 ≤ i ≤ n, 1 ≤ k < j ≤ n}

为一组 V 的特征向量组，分别对应特征值 1和 −1。
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6.2 补充题

在此基下，τ 的矩阵为对角阵：
diag

(
In(n+1)

2
, −In(n−1)

2

)
结论：-特征值：±1；-特征向量：所有对称与斜对称矩阵；-可对角化，对角矩阵如上所示。

练习 6.14

♣设方阵 A ∈ Fn×n 满足 A2 = A，证明：A可对角化。

解由 A2 −A = A(A− I) = O可知：
rankA+ rank(A− I) ≤ n

考虑齐次线性方程 AX = 0与 (A− I)X = 0的解空间，设 VA = kerA，VA−I = ker(A− I)。
根据秩-零化度定理，有：

dimVA + dimVA−I = (n− rankA) + (n− rank(A− I)) = 2n− (rankA+ rank(A− I)) ≥ n

另一方面，VA 是 A属于特征值 0的特征子空间 V0，而 VA−I 是 A属于特征值 1的特征子空间 V1。因此：

V0 = kerA, V1 = ker(A− I)⇒ U := V0 + V1

由于特征值互异，V0 ∩ V1 = {0}，所以 U = V0 ⊕ V1 是直和空间，且维数至少为 n：

dimU = dimV0 + dimV1 ≥ n⇒ dimU = n⇒ V = U = V0 ⊕ V1

说明 V 被 A的两个特征空间分解，因此 A可对角化。
任选 V0 和 V1 的一组基，其并集M 构成 V 的一组基。M 中元素均为 A的特征向量。
设 P 是M 中各向量为列构成的矩阵，则有：

P−1AP = diag(1, . . . , 1, 0, . . . , 0)

其中 1与 0的个数分别为 dimV1 与 dimV0。该矩阵为对角阵，故 A可对角化。
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第 7章 第七次习题课

7.1 习题解答

练习 7.1 (P213 6.21)

♣

判断以下矩阵 A,B 是否相似？请说明理由.

(1) A =


1 2 3

0 1 0

0 0 1

 , B =


1 2 0

0 1 3

0 0 1


解我们假设存在可逆矩阵 P 使得 B = PAP−1，那么首先 A和 B 的特征值应该是一样的（这里包括重数）.

计算可得 A和 B 的特征值都是 1（重数 3）.
然而，特征值及重数一致是无法作为矩阵相似的充分条件的.
考虑 A− I 和 B − I，应当也有关系:B − I = P (A− I)P−1，由于 P 是可逆的，这表明：

rank(B − I) = rank(A− I)

然而:
rank(A− I) = 1 6= 2 = rank(B − I)

这说明 A和 B 并不是相似的.�
笔记这里涉及到了线性代数 B2会讲的一个概念 Jordan标准型，感兴趣的同学可以在 6.5节自行阅读相关内容，
B1部分这个概念不会作为考察范围（但判断题还是可能遇到这种）.
再次提醒大家：特征值相同是弱于矩阵相似的！至于特征向量一样更是和相似没任何关系啊！

练习 7.2 (P213 6.26)

♣

设矩阵 A =


0 0 1

x 1 y

1 0 0

有三个线性无关的特征向量.求 x和 y应满足的条件.

解由 A的特征多项式为 pA(λ) = (λ− 1)2(λ+ 1)可知，A的特征值为：

λ1 = 1(重数 2), λ2 = −1

λ1 = 1时，方程为:

B1 α =


1 0 −1
−x 0 −y
−1 0 1

α = 0⃗

λ2 = −1时，方程为:

B2 α =


−1 0 −1
−x −2 −y
−1 0 −1

α = 0⃗

由于我们希望有三个线性无关的特征向量，这要求 λ1 = 1处可以有两个线性无关的特征向量，从而要有：

rank(B1) = 1⇒ x+ y = 0



7.1 习题解答

另一方面，x+y = 0时，可以给出以下三个先行无关的特征向量（前两个对应特征值 1，第三个对应特征值−1)：

α1 =


1

0

1

 , α2 =


0

1

0

 , α3 =


1

−x
−1

 .

练习 7.3 (P213 6.28)

♣

设 n阶方阵 A 6= 0，满足 Am = 0，其中m ≥ 2为正整数.
（1）求 A的特征值；
（2）证明：A不能相似于对角阵；
（3）证明：|I +A| = 1.

解（1）若 λ为 A的特征值，那么由作业题 6.16的结论，λm也为 Am = 0的特征值，从而 λm = 0，于是 A的
特征值为 0（重数 n）.
（2）反证：假设 A可以相似于对角阵，这说明 A有 n个线性无关的特征向量.
由第五章的结论：

dim(N(A)) = n− rank(A) = n⇒ rank(A) = 0⇒ A = 0

矛盾，从而 A无法相似于对角阵.
（3）再次由作业题 6.16的结论，I +A的特征值为 1（重数 n），这说明

det(I +A) =

n∏
i=1

λi = 1

练习 7.4 (P214 6.31)

♣

设 n阶方阵 A满足 A2 = I，证明 A相似于

(
Ir 0

0 In−r

)
，其中 0 ≤ r ≤ n.

证明 首先，若 λ为 A的特征值，则 λ2 为 A2 的特征值，这说明 λ2 = 1，即 λ = 1/− 1.
我们设 A的特征值为 λ1 = 1（重数 r）和 λ2 = −1（重数 n− r）.
下面将说明为什么 A有 n个线性无关的特征向量.
首先，由于：(

I +A 0

0 I −A

)
→

(
I +A I +A

0 I −A

)
→

(
I +A 2I

0 I −A

)
→

(
I +A− (I +A) = 0 2I

− 1
2 (I +A)(I −A) = 0 I −A

)

→

(
0 2I

0 I −A− (I −A)

)

这个过程全是初等变换，所以rank(I +A) + rank(I −A) = n.
然后，由于A+I的特征值中有 r个 2，则在A+I的相似上三角化后，对角线有 r个 2，这表明 rank(A+I) ≥ r.

类似的我们也可以得到 rank(A− I) ≥ n− r. 结合三个关于 rank的式子我们可以发现：

rank(A+ I) = r ⇒ dim(N(A+ I)) = n− r

rank(A− I) = n− r ⇒ dim(N(A− I)) = r

这说明，存在 r个线性无关的向量 α1, · · · , αr 使得

A αi = αi (1 ≤ i ≤ r).

他们是 A特征值 1的特征向量.
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7.1 习题解答

类似的，存在 n− r个线性无关的向量 αr+1, · · · , αr 使得

A αj = −αj (r + 1 ≤ j ≤ n).

他们是 A特征值 −1的特征向量.
最后，α1, · · · , αn 构成了 A的 n个线性无关的特征向量. 得证.�

笔记 B1范围内，方阵可以相似对角化只有书本 P189的定理 6.3.1.其他的都是衍生的结论.

练习 7.5 (P215 6.38)

♣

设 R3 中的线性变换 A将

α1 = (0, 0, 1)T , α2 = (0, 1, 1)T , α3 = (1, 1, 1)T

变换到
β1 = (2, 3, 5)T , β2 = (1, 0, 0)T , β3 = (0, 1,−1)T .

求 A在自然基和 α1, α2, α3 下的矩阵.

解计算可得： 
β1 = 2α1 + α2 + 2α3

β2 = −α2 + α3

β3 = −2α1 + α2

所以 A在 (α1, α2, α3)下的矩阵:

A =


2 0 −2
1 −1 1

2 1 0


另外： 

A(e1) = A(α3)−A(α2) = (−1, 1,−1)T = −e1 + e2 − e3

A(e2) = A(α2)−A(α1) = (−1,−3,−5)T = −e1 − 3e2 − 5e3

A(e3) = A(α1) = (2, 3, 5)T = 2e1 + 3e2 + 5e3

所以 A在自然基下的矩阵

A′ =


−1 −1 2

1 −3 3

−1 −5 5


练习 7.6 (P216 6.42)

♣

设 V 为 n维线性空间，A : V → V 为线性变换. 若存在 α ∈ V，使得 An−1(α) 6= 0，但是 An(α) = 0，证
明：A在某组基下的矩阵为 

0 1 0 · · · 0

0 1
. . .

...

. . .
. . . 0

0 1

0


证明 当我们记 βi = An−i(α) (1 ≤ i ≤ n)时，会发现我们有 A(βi+1) = βi (1 ≤ i ≤ n− 1)和 A(β1) = 0.

所以我们只需要证明 α,A(α), · · · ,An−1(α)是 V 的一组基，也就是他们线性无关.
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7.1 习题解答

首先设
n∑

i=1

aiAi−1(α) = 0 (⋆)

两侧作 n− 1次 A变换:
a1An−1(α) + a2An(α) + · · ·+ anA2n−2(α) = 0

由于 An(α) = 0，自然就会有：
Am(α) = 0 (m ≥ n)

那么就可以推出：a1An−1(α) = 0，结合 An−1(α) 6= 0即 a1 = 0.
若我们已经证明了 a1. · · · , aj 为 0，对 (⋆)两侧作 n− j − 1次变换：

aj+1An−1(α) +

n∑
i=j+2

aiAi+n−j−2(α) = 0⇒ aj+1 = 0

从而可归纳证明 a1 = · · · = an = 0，这说明 α,A(α), · · · ,An−1(α)线性无关.
从而我们证明了 A在 An−1(α),An−2(α), · · · , α这组基下的矩阵如题所求.

练习 7.7 (P216 6.44)

♣

设 V 为次数不超过 2的多项式构成的线性空间.线性变换 A : V → V 满足：

A(1) = x2 + x+ 3, A(x) = 2x+ 1, A(x2) = 2x2 + 3.

求 A的特征值和特征向量.

解易得 1, x, x2 是 V 的一组基，且 A在这组基下的矩阵为：

A =


3 1 3

1 2 0

1 0 2


计算可得:

λI −A =


λ− 3 −1 −3
−1 λ− 2 0

−1 0 λ− 2


则特征多项式为:

det(λI −A) = (λ− 2)(λ2 − 5λ+ 2)

这表明 A的特征值为 λ1 = 2，λ2 = 5+
√
17

2 和 λ3 = 5−
√
17

2 .
对于 λ1 = 2，解 (A− 2I)x = 0可得：

a1 = c1(0, 3,−1)T (c1 6= 0)

对于 λ2 = 5+
√
17

2 ，可解得其对应特征向量为:

a2 = c2(
1 +
√
17

2
, 1, 1)T (c2 6= 0)

对于 λ3 = 5−
√
17

2 ，可解得其对应特征向量为:

a3 = c3(
1−
√
17

2
, 1, 1)T (c3 6= 0)

回到 A，它有三个特征值：
特征值 λ1 = 2对应特征向量

(1, x, x2)a1 = c1(3x− x2) c1 6= 0
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7.1 习题解答

特征值 λ2 = 5+
√
17

2 对应特征向量

(1, x, x2)a2 = c2(
1 +
√
17

2
+ x+ x2) c2 6= 0

特征值 λ3 = 5−
√
17

2 对应特征向量

(1, x, x2)a3 = c3(
1−
√
17

2
+ x+ x2) c3 6= 0

练习 7.8 (P215 6.41)

♣

在 R3 中定义两组基：
α1 = (1, 0, 1)T , α2 = (2, 1, 0)T , α3 = (1, 1, 1)T ;

β1 = (2, 3, 1)T , β2 = (7, 9, 5)T , β3 = (3, 4, 3)T .

定义线性变换 A(αi) = βi (i = 1, 2, 3).
(1)求 A在基 α1, α2, α3 下的矩阵；
(2)求 A在基 β1, β2, β3 下的矩阵.

解由题意，记第 (1)小问的矩阵为 A，则：

(β1, β2, β3) = (α1, α2, α3)A⇒ A = (α1, α2, α3)
−1(β1, β2β3)

代入数值后:

A =


− 3

2 −3 −1
1
2 1 0
5
2 8 4


(2)注意到 βi =

∑3
j=1 ajiαj，两边由 A作用后：

A(βi) = A(
3∑

j=1

ajiαj) =

3∑
j=1

ajiA(αj) =

3∑
j=1

ajiβj

这说明在基 β1, β2, β3 下的矩阵还是 A.�
笔记请大家注意：“线性变换的特征向量”是一个很容易混淆的东西，可以回看书本 P202的定义 6.4.2，具体来
说，λ作为一个特征向量一定至少有 λ ∈ V（这里 V 是被变换的空间.）

练习 7.9 (P216 6.45)

♣

设 V = Fn×n.
(1)证明：V 的变换 A : X → XT 是线性变换;
(2)求 A的特征值和特征向量. A是否可对角化？

解 (1)证明: （可以见 P194的定义 6.4.1）对 X,Y ∈ Fn×n 和 λ ∈ F，

A(X + Y ) = (X + Y )T = XT + Y T = A(X) +A(Y )

A(λX) = (λX)T = λXT = λX

从而 A是线性变换.
(2) A在某组基下的矩阵表达较为困难，我们直接寻找特征值和特征向量.
注意到:Eii (1 ≤ i ≤ n)和 Xij = Eij + Eji (i < j)满足:

A(Eii) = Eii; A(Xij) = Xij .

这 n(n+1)
2 个矩阵为特征值 1对应的特征向量.
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7.1 习题解答

另外，Yij = Eij − Eji (i < j)满足：
A(Yij) = −Yij .

这 n(n−1)
2 个矩阵为特征值 −1对应的特征向量.

最后，Eii, Xij , Yij 这 n2 个特征向量线性无关，说明 A可以对角化.
结论：A的特征值为 1（重数 n(n+1)

2 ），对应特征向量为全体对称矩阵和 −1（重数 n(n−1)
2 ），对应特征向量为全

体反对称矩阵.�
笔记这题和上次习题课的练习 6.13是同一题，可以看一下两个方法的异同处.

直和这个概念不出意外B1不要求掌握.

练习 7.10 (P253 7.1)

♣

已知 α1 = (1, 2,−1, 1), α2 = (2, 3, 1,−1), α3 = (−1,−1,−2, 2).
(1)求 α1, α2, α3 的长度和彼此间的夹角.
(2)求与 α1, α2, α3 都正交的向量.

解 (1)直接计算可得:

|α1| =
√
12 + 22 + (−1)2 + 12 =

√
7, |α2| =

√
15, |α3| =

√
10

(α1, α2) = 2 + 6− 1− 1 = 6 (α2, α3) = −9 (α3, α1) = 1

从而如果记 θij 为 αi 和 αj 之间的夹角，就会有：

θ12 = arccos(
6√
105

) = arccos(
2
√
105

35
), θ23 = arccos(

√
70

70
), θ31 = arccos(−3

√
6

10
)

(2)记 β = (b1, b2, b3, b4)为和三个向量都正交的向量，解线性方程组
b1 + 2b2 − b3 + b4 = 0

2b1 + 3b2 + b3 − b4 = 0

−b1 − b2 − 2b3 + 2b4 = 0

可以算得：
β = b3(−5, 3, 1, 0) + b4(5,−3, 0,−1)

练习 7.11 (P253 7.3)

♣

设 x, y为 Euclid空间 Rn 的两个向量.它们之间的夹角为 θ.证明：
(1)（余弦定理）|x− y|2 = |x|2 + |y|2 − 2|x||y|cos(θ)
(2)（平行四边形定理）|x+ y|2 + |x− y|2 = 2(|x|2 + |y|2)
(3)（菱形对角线定理）若 |x| = |y|，则 (x+ y) ⊥ (x− y)

解 (1)利用到 |x|2 = (x, x)和 (x+ y, z) = (x, z) + (y, z)（三题都可以用）

LHS = (x− y, x− y) = (x, x− y)− (y, x− y) = |x|2 − (x, y)− (y, x) + |y|2 = |x|2 + |y|2 − 2(x, y) = RHS

(2)类似于 (1)，可以证明 |x+ y|2 = |x|2 + |y|2 + 2(x, y)

LHS = |x|2 + |y|2 + 2(x, y) + |x|2 + |y|2 − 2(x, y) = 2(|x|2 + |y|2) = RHS

(3)
(x+ y, x− y) = (x, x− y) + (y, x− y) = |x|2 − (x, y) + (y, x)− |y|2 = |x|2 − |y|2 = 0

这说明 (x+ y) ⊥ (x− y)
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7.2 补充题

7.2 补充题

练习 7.12 (P257 6.33)

♣

设 Rn[x]是次数不超过 n的实系数多项式全体在内积

(f(x), g(x)) =

∫ 1

−1
f(x)g(x)dx

下的 Eucild空间.令：
P0(x) = 1, Pn(x) =

1

2nn!

dn

dxn
((x2 − 1)n), n ≥ 1.

证明:P0(x), P1(x), · · · , Pn(x)构成 Rn[x]的一组正交基.称 Pn(x)为 Legendre多项式.

证明 记 u = dm

dxm (x2 − 1)m, v = dn−1

dxn−1 (x
2 − 1)ndx (m > n)，回顾我们要证明的结论：∫ 1

−1
Pn(x)Pm(x)dx =

1

2m+nm!n!

∫ 1

−1
udv

由分部积分的性质:

原式 = uv|1−1 −
∫ 1

−1
vdu

注意到 (x2 − 1)n 在 x = ±1处有 n阶零点，所以 v在 x = ±1处为 0，从而中间一项 uv|1−1 为 0.
现在我们的目标变为

∫ 1

−1 vdu = 0，为此，记 u1 = dm+1

dxm+1 (x
2 − 1)m, v = dn−2

dxn−2 (x
2 − 1)ndx，可以发现：

原式 =

∫ 1

−1
u1dv1 = u1v1|1−1 −

∫ 1

−1
v1du1

然后我们也可以发现 v1 在 x = ±1处为 0.
记 u2 = dm+2

dxm+2 (x
2 − 1)m, v = dn−3

dxn−3 (x
2 − 1)ndx，目标变为

∫ 1

−1 u2dv2 为 0.
省略这个不断分部积分的过程，最后我们仅需要证明:∫ 1

−1
((x2 − 1)n)(

dm+n

dxm+n
(x2 − 1)m) = 0

而 2m次多项式 (x2 − 1)m 的m+ n阶导数一定为 0，原命题得证.�
笔记这道题我反复尝试，也和我的学长聊过，Legendre多项式通项的表达是极其困难甚至无法完成的，当然这
本身是数分问题，可以当成数学分析的补充题.

练习 7.13 (P213 6.24)

♣

如果 A与 B 相似，C 与 D相似，证明：

(
A 0

0 C

)
与

(
B 0

0 D

)
相似.

证明 首先，存在可逆方阵 P1,P2，使得 B = P−11 AP1, D = P−12 CP2. 于是我们就有:(
B 0

0 D

)
=

(
P−11 AP1 0

0 P−12 CP2

)
=

(
P1 0

0 P2

)−1(
A 0

0 C

)(
P1 0

0 P2

)

练习 7.14

♣

设 A,B是 n阶复方阵，且 A的特征多项式为 φA(λ).证明：φA(B)可逆的充分必要条件是：A与 B没有
公共的特征值.

证明 φA(λ) = (λ− λ1)
n1 · · · (λ− λt)

nt，其中 λ1, · · ·λt 是 A的全部不同的特征值.
方阵 φA(B) = (B − λ1I)

n1 · · · (B − λt)
nt 可逆的充分必要条件是它的行列式

|φA(B)| = |B − λ1I|n1 · · · |B − λt|nt 6= 0
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7.2 补充题

即每个 |B − λiI| 6= 0 (∀1 ≤ i ≤ t).
也就是：每个 λi 不是多项式 |B − λI| = (−1)n|λI −B| = (−1)nφB 的根，不是 B 的特征值.
于是：φA(B)可逆的充分必要条件是：A的每个特征值 λi 不是 B 的特征值，即：A与 B 没有公共的特征

值.�
笔记 a是 B 的特征值⇔ a是多项式 ϕB(λ) = |λI −B|的根⇔行列式 |aI −B| = 0⇔方阵 aI −B 不可逆.

反过来，a不是 B 的特征值⇔ aI −B 可逆.

练习 7.15

♣

已知数域 F 上方阵 A满足条件 rank(A− I) = 1且 (A− I)2 = 0.

求证：A相似于 diag(

(
1 1

0 1

)
, 1, · · · , 1).

证明 设 B = A − I，则 rankB = 1且 B2 = 0，则存在可逆方阵 P1, Q1 使得 B 相抵于 D1 = diag(1, 0, · · · , 0).
从而 B 相抵于：

A1 = P1BP−11 = D1(Q
−1
1 P−1) =

(
a β

0 O

)

且由 A2
1 = P1A

2P−11 = O 6= A1 可知 a = 0, β 6= 0.从而存在 n − 1阶可逆方阵 Q2 使得 βQ2 = (1, 0, · · · , 0).取
P2 = diag(1, Q2)就会有：

N = P−12 A1P2 = diag(

(
0 1

0 0

)
, .0, · · · , 0) = P−12 P1BP−11 P2

取 P = P−12 P1，则 B = P−1NP，A = I +B = P−1(I +N)P 相似于

I +N = diag(

(
1 1

0 1

)
, 1, · · · , 1)

练习 7.16

♣

(1)求证:

B =


a1 a2 · · · an−1 an

an a1 · · · an−2 an−1
...

...
. . .

...
...

a2 a3 · · · an a1

可以写成A =

(
0 In−1

1 0

)
的多项式.

(2)利用 A的对角化将 B 相似于对角阵 D.
(3)利用 D的行列式求 B 的行列式.

解 (1)对每个正整数 k (1 ≤ k ≤ n− 1)，

Ak =

(
O In−k

Ik O

)

因此 B = a1I + a2A+ a3A
2 + · · ·+ anA

n−1 = f(A)对多项式 f(x) = a1 + a2x+ a3x
2 + · · ·+ anx

n−1 成立.
(2) φA(λ) = |λIA| = λn − 1的 n个不同的根为 ωk (0 ≤ k ≤ n− 1)，其中 ω = cos 2π

n + isin 2π
n .

计算可知 Pi = (1, ωk, ω2k, · · · , ω(n−1)k)T 是属于特征值 ωk 的特征向量. 依次以各 Pi 为各列拍成矩阵 P =

(P0, P1, · · · , Pn−1).则AP = (AP0, AP1, · · · , APn−1) = PD对D = diag(1, ω, ω2, · · · , ωn−1)成立.从而P−1AP =

D是与 A相似的对角阵. 从而：

P−1BP = P−1f(A)P = f(D) = diag(f(1), f(ω), f(ω2), · · · , f(ωn−1))

是与 B 相似的对角阵.
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7.2 补充题

(3) det(B) = det(Pf(D)P−1) = det(f(D)) =
∏n−1

i=0 f(ωi) =
∏n−1

i=0 (Σ
n
j=1ajω

j−1
i )

练习 7.17

♣
对 A ∈ Fn×n，证明：若存在没有重根的多项式 f(x)使得 f(A) = O，则 A可以相似对角化.

�
笔记这道题还是需要先写笔记，证明可能确实比较晦涩（因为只能用 B1的知识证明），但这道题的结论可以在
考试时候临时拿出来用用（指你仅仅拿它来判断一个矩阵可以对角化）.
证明 设 f(x) =

∏k
i=1(x− λi)，不妨设 fi(x) =

∏
j≠i(x− λj)无法使得 f(A) = O.（否则我们直接对 fi(x)讨论

就行了.）
为了证明一个方阵可以相似对角化，我们需要回归定理，也就是证明 A 可以找出 n 个线性无关的特征

向量. 记 Ai = A − λiI，同时记 Vi 为 Aix = 0 的子空间，为此我们就是要证明 Σk
i=1dim(Vi) = n，或者是

Σk
i=1rank Ai = (k − 1)n

引理：对任意 1 ≤ j ≤ k，都有

rank(

j−1∏
i=1

A− λiI) + rank(A− λjI) = n+ rank(

j∏
i=1

A− λiI)

引理 2：对多项式 f(x)和 g(x)，存在（甚至是存在唯一）多项式 q(x)和 r(x)使得

f(x) = g(x)q(x) + r(x), 且 deg(r) < deg(g)

引理 2就是多项式除法的定义，感兴趣的同学可以自行去搜索，这里不展开了.
对于 f0(x) =

∏j−1
i=1 (x− λi)和 g0(x) = x− λj，可以发现 r(x) = c一个常数，且 c 6= 0

回到引理的证明可以由以下初等变换过程完成：(
f0(A) O

O g0(A)

)
→

(
f0(A) f0(A)

0 g0(A)

)
→

(
f0(A) f0(A)− q(A)g0(A) = r(A) = cI

0 g0(A)

)

→

(
f0(A)− f0(A) cI

− 1
cg0(A)f0(A) = − 1

c

∏j
i=1 A− λiI g0(A)

)
→

(
O cI

− 1
c

∏j
i=1 A− λiI g0(A)− g0(A)

)

于是引理成立，从而最后我们用一串连等式为这次习题课讲义收尾：

Σk
i=1rank Ai = n+ rank(A1A2) + Σk

i=3rank Ai = · · · = (k − 2)n+ rank(A1 · · ·Ak−1) + rankAk = (k − 1)n
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第 8章 第八次习题课

8.1 习题解答

练习 8.1 (P253 4)

♣
设 a1,a2, . . . , an 为 Rn 的一组基，a ∈ Rn。证明：a = 0当且仅当 (a,ai) = 0, i = 1, 2, . . . , n.

解由于 a1,a2, . . . , an 是 Rn 的一组基，所以对任意 a ∈ Rn，都可以唯一表示为

a = x1a1 + x2a2 + · · ·+ xnan,

其中 x1, x2, . . . , xn 为实数。
对 ∀i = 1, 2, . . . , n，利用内积的线性性，有

(a,ai) = (x1a1 + · · ·+ xnan,ai) = x1(a1,ai) + · · ·+ xn(an,ai).

如果 a = 0，显然对任意 i有 (a,ai) = 0。
反过来，如果 (a,ai) = 0, ∀i，则

x1(a1,ai) + · · ·+ xn(an,ai) = 0, ∀i = 1, 2, . . . , n.

这构成一个 n元一次齐次线性方程组。由于 a1, . . . , an 是线性无关的基，因此方程组的系数矩阵（格拉姆矩阵）
可逆，只有零解，即 x1 = x2 = · · · = xn = 0，所以 a = 0。

综上，a = 0当且仅当 (a,ai) = 0, i = 1, 2, . . . , n。

练习 8.2 (P254 5(2))

♣

用 Schmidt正交化方法构造标准正交向量组：

(1, 1, 1, 2), (1, 1,−5, 3), (3, 2, 8,−7).

解设 a1 = (1, 1, 1, 2)，a2 = (1, 1,−5, 3)，a3 = (3, 2, 8,−7)。
按照 Gram-Schmidt正交化方法：
第一步：令 b1 = a1 = (1, 1, 1, 2)

单位化得：
e1 =

b1

‖b1‖
=

1√
12 + 12 + 12 + 22

(1, 1, 1, 2) =
1√
7
(1, 1, 1, 2)

第二步：b2 = a2 − projb1
a2

先计算
(a2,b1) = 1 · 1 + 1 · 1 + (−5) · 1 + 3 · 2 = 1 + 1− 5 + 6 = 3

(b1,b1) = 12 + 12 + 12 + 22 = 7

所以

projb1
a2 =

3

7
(1, 1, 1, 2) =

(
3

7
,
3

7
,
3

7
,
6

7

)
因此

b2 = (1, 1,−5, 3)−
(
3

7
,
3

7
,
3

7
,
6

7

)
=

(
1− 3

7
, 1− 3

7
,−5− 3

7
, 3− 6

7

)

=

(
4

7
,
4

7
,−38

7
,
15

7

)



8.1 习题解答

单位化得

‖b2‖ =

√(
4

7

)2

+

(
4

7

)2

+

(
−38

7

)2

+

(
15

7

)2

=
1

7

√
16 + 16 + 1444 + 225 =

1

7

√
1701

e2 =
b2

‖b2‖
=

1√
1701

(4, 4,−38, 15)

第三步：b3 = a3 − projb1
a3 − projb2

a3

单位化 b3 后得 e3。
—
最终标准正交组为：

e1 =
1√
7
(1, 1, 1, 2), e2 =

1

9
√
21

(4, 4,−38, 15), e3 =
b3

‖b3‖

e3 =

493
√

2
13449

9
,

743

9
√
26898

,
−133

9
√
26898

,
−133

√
2

13449

3


练习 8.3 (P254 6)

♣

设在 R3 中，基 a1,a2,a3 的度量矩阵是 
1 0 −1
0 2 0

−1 0 2


试求 R3 中由 a1,a2,a3 表示的一组标准正交基。

解设 a1,a2,a3 为 R3 的基，它们的度量矩阵为 G：

G =


1 0 −1
0 2 0

−1 0 2


其中 Gij = (ai,aj)表示 ai 与 aj 的内积。

我们在 a1,a2,a3张成的空间内，用广义 Gram-Schmidt正交化过程来构造一组标准正交基 e1, e2, e3，形式为

ek =

3∑
i=1

λ
(k)
i ai

且满足 (ei, ej) = δij。
第一步：令 b1 = a1，规范化：

‖b1‖2 = (a1,a1) = G11 = 1

e1 =
b1

‖b1‖
= a1

第二步：将 a2 在 e1 方向上正交化：

proje1
a2 =

(a2, e1)

(e1, e1)
e1 =

G21

G11
a1 =

0

1
a1 = 0

b2 = a2 − proje1
a2 = a2

规范化：
‖b2‖2 = (a2,a2) = G22 = 2

e2 =
b2

‖b2‖
=

1√
2
a2
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8.1 习题解答

第三步：将 a3 在 e1 和 e2 方向上正交化：

proje1
a3 =

(a3, e1)

(e1, e1)
e1 =

G31

1
a1 = (−1)a1

(a3, e2) = (a3,
1√
2
a2) =

1√
2
G32 =

1√
2
× 0 = 0

所以
proje2

a3 = 0

b3 = a3 − proje1
a3 − proje2

a3 = a3 − (−1)a1 = a3 + a1

规范化：
‖b3‖2 = (a3 + a1,a3 + a1) = (a3,a3) + 2(a3,a1) + (a1,a1)

= G33 + 2G31 +G11 = 2 + 2× (−1) + 1 = 2− 2 + 1 = 1

e3 =
b3

‖b3‖
= a3 + a1

结论：
由 a1,a2,a3 表示的 R3 中的一组标准正交基为：

e1 = a1, e2 =
1√
2
a2, e3 = a3 + a1

练习 8.4 (P254 11)

♣

设 e1, e2, . . . , en 是 Rn 的标准正交基，x1,x2, . . . ,xk 是 Rn 中任意 k 个向量。试证：x1,x2, . . . ,xk 两两
正交的充要条件是

n∑
s=1

(xi, es)(xj , es) = 0, i, j = 1, 2, . . . , k, i 6= j.

解证明：
设 xi,xj 为 Rn 中的两个向量，{e1, . . . , en}为 Rn 的标准正交基。任意向量 x ∈ Rn 可以表示为

x =

n∑
s=1

(x, es)es,

其中 (x, es)即 x在 es 方向上的分量。
对于 xi 和 xj 的内积，有

(xi,xj) =

(
n∑

s=1

(xi, es)es,

n∑
t=1

(xj , et)et

)
=

n∑
s=1

n∑
t=1

(xi, es)(xj , et)(es, et)

由于 {es}是标准正交基，(es, et) = δst，只有 s = t时等于 1，否则为 0，所以上式化为

(xi,xj) =

n∑
s=1

(xi, es)(xj , es)

必要性：如果 x1, . . . ,xk 两两正交，则对于 i 6= j 有 (xi,xj) = 0，所以
n∑

s=1

(xi, es)(xj , es) = 0.

充分性：反之，如果对于任意 i 6= j，有
n∑

s=1

(xi, es)(xj , es) = 0,

则直接由上面的推导知 (xi,xj) = 0，即 x1, . . . ,xk 两两正交。

87



8.1 习题解答

结论：所以，x1, . . . ,xk 两两正交的充要条件是
n∑

s=1

(xi, es)(xj , es) = 0

对任意 i, j = 1, 2, . . . , k, i 6= j 成立。

练习 8.5 (P254 19)

♣

给定三阶矩阵

A =


1 2 0

0 1 2

2 0 1


求 A的 QR分解。

解我们希望将向量组 α1 = (1, 0, 2)T , α2 = (2, 1, 0)T , α3 = (0, 2, 1)T 进行 QR分解。
归一化第一个向量：

u1 =
α1

‖α1‖
=

1√
5
(1, 0, 2)T

对 α2 做正交化：
u′2 = α2 − 〈α2, u1〉u1 =

1

5
(8, 5,−4)T

归一化：

u2 =
u′2
‖u′2‖

=
1√
105

(8, 5,−4)T

对 α3 做正交化：
u′3 = α3 − 〈α3, u1〉u1 − 〈α3, u2〉u2 =

3

7
(−2, 4, 1)T

归一化：

u3 =
u′3
‖u′3‖

=
1√
21

(−2, 4, 1)T

记各个内积结果如下：
〈α1, u1〉 =

√
5, 〈α2, u1〉 =

2√
5
, 〈α3, u1〉 =

2√
5

〈α2, u2〉 =
√
105

5
, 〈α3, u2〉 =

2
√
105

35
, 〈α3, u3〉 =

9√
21

因此：

Q =


1√
5

8√
105

−2√
21

0 5√
105

4√
21

2√
5

−4√
105

1√
21

 , R =


√
5 2√

5
2√
5

0
√
105
5

2
√
105
35

0 0 9√
21


我们完成了对矩阵的 QR分解，使得：

A = QR

练习 8.6 (P254 20)

♣

设W 是由 (1, 1, 0), (1,−2, 1)生成的 R3 的子空间。
(1) 求W 的一组标准正交基。
(2) 求W⊥ 的标准正交基。
(3) 求向量 (0, 0, 2)在W 的正交投影。

解设 a1 = (1, 1, 0)，a2 = (1,−2, 1)。
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8.1 习题解答

(1)求W = span{a1,a2}的一组标准正交基
使用 Gram-Schmidt正交化：

b1 = a1, e1 =
b1

‖b1‖
=

1√
2
(1, 1, 0)

b2 = a2 − projb1
(a2) =

(
3

2
,−3

2
, 1

)
, e2 =

b2

‖b2‖
=

(
3√
22

, − 3√
22

,
2√
22

)
因此标准正交基为：

e1 =
1√
2
(1, 1, 0), e2 =

(
3√
22

, − 3√
22

,
2√
22

)

(2)求W⊥ 的标准正交基
设 n = (x, y, z)满足与 a1,a2 正交：

x+ y = 0, x− 2y + z = 0⇒ y = −x, z = −3x

取 x = 1，得 n = (1,−1,−3)，单位化得：

e3 =
1√
11

(1,−1,−3)

e3 =
1√
11

(1,−1,−3)

(3)求向量 v = (0, 0, 2)在W 上的正交投影
由公式：

projW v = (v, e1)e1 + (v, e2)e2

因为 (v, e1) = 0，(v, e2) =
4√
22
，

projW v =
4√
22
·
(

3√
22

, − 3√
22

,
2√
22

)
=

(
6

11
, − 6

11
,

4

11

)

projW (0, 0, 2) =

(
6

11
, − 6

11
,

4

11

)
练习 8.7 (P256 26)

♣

设

A =


1 −2 0

−2 2 −2
0 −2 3

 ,

求正交矩阵 P，使 P−1AP 为对角矩阵。由此求 Ak，k为自然数。

解第一步：求特征值
由特征方程 det(λI −A) = 0可得：

det


λ− 1 2 0

2 λ− 2 2

0 2 λ− 3

 = λ3 − 6λ2 + 3λ+ 10 = (λ+ 1)(λ− 2)(λ− 5)
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8.1 习题解答

故特征值为 λ1 = −1, λ2 = 2, λ3 = 5。
第二步：求特征向量
对应 λ = −1：

(A+ I)x = 0⇒


2 −2 0

−2 3 −2
0 −2 4

x = 0⇒ x1 =


2

2

1


对应 λ = 2：

(A− 2I)x = 0⇒


−1 −2 0

−2 0 −2
0 −2 1

x = 0⇒ x2 =


2

−1
−2


对应 λ = 5：

(A− 5I)x = 0⇒


−4 −2 0

−2 −3 −2
0 −2 −2

x = 0⇒ x3 =


−1
2

2


第三步：构造正交矩阵 P

将以上特征向量单位化后按列排列组成正交矩阵 P：

P =
1

3


2 2 −1
2 −1 2

1 −2 2

 满足 P−1AP = P⊤AP =


−1 0 0

0 2 0

0 0 5


第四步：计算 Ak

因为 A = PDP⊤，所以有：
Ak = (PDP⊤)k = PDkP⊤

其中 Dk = diag((−1)k, 2k, 5k)。
将 P , Dk 和 P⊤ 展开后进行乘法，最终结果为：

Ak =
1

9


4(−1)k + 2k+2 + 5k 4(−1)k − 2k+1 − 2 · 5k 2(−1)k − 2k+2 + 2 · 5k

4(−1)k − 2k+1 − 2 · 5k 4(−1)k + 2k + 4 · 5k 2(−1)k + 2k+1 − 4 · 5k

2(−1)k − 2k+2 + 2 · 5k 2(−1)k + 2k+1 − 4 · 5k (−1)k + 2k+2 + 4 · 5k


练习 8.8 (P256 29)

♣

设 A为 n阶实对称方阵，且 A2 = A。证明：存在正交方阵 T 使得

T−1AT = diag(Ir, O),

这里 r = rank(A)。

解因为 A是实对称矩阵且 A2 = A，所以 A是对称幂等矩阵。对称矩阵可以正交对角化，所以存在正交矩阵 T

使
T−1AT = TTAT = Λ = diag(λ1, . . . , λn)

且 λi 为 A的特征值。又由 A2 = A，特征值 λi 满足 λ2
i = λi，即 λi = 0或 1。

设 1出现 r次，0出现 n− r次，则

Λ = diag(1, . . . , 1︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
n−r

) = diag(Ir, O)

其中 Ir 为 r阶单位阵，O为 (n− r)阶零阵，且 r = rank(A)。
故证毕。
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8.1 习题解答

练习 8.9 (P256 30)

♣

设 A为 n阶实对称方阵。证明：

max
0 ̸=x∈Rn

xTAx

xTx
= λmax

这里 λmax 是 A的最大特征值。

解对称矩阵 A有实正交特征向量组 {vi}和实特征值 λi。任取 0 6= x ∈ Rn，可写

x =

n∑
i=1

aivi

则

xTAx =

(∑
i

aivi

)T

A

∑
j

ajvj

 =
∑
i,j

aiajv
T
i Avj =

∑
i,j

aiajλjv
T
i vj =

∑
i

a2iλi

又
xTx =

∑
i

a2i

所以
xTAx

xTx
=

∑
i a

2
iλi∑

i a
2
i

这是 {λi}的加权平均值，最大值为 λmax，当 x取为对应 λmax 的特征向量时取到最大。
故

max
0 ̸=x∈Rn

xTAx

xTx
= λmax

证毕。

练习 8.10 (P257 32(1))

♣

设 α1, α2, . . . , αn 是 n 维欧氏空间 V 的一组向量。定义其 Gram 矩阵 G = ((αi, αj)) ∈ Rn×n。证明：
α1, . . . , αn 构成 V 的一组基当且仅当 det(G) 6= 0。

解必要性：若 α1, . . . , αn 是 V 的一组基，则它们线性无关。若 det(G) = 0，则存在不全为零的 (x1, . . . , xn)使
Gx = 0，即

n∑
j=1

(αi, αj)xj = 0, ∀i

即
(
αi,
∑

j xjαj

)
= 0对 ∀i，即

∑
j xjαj与所有 αi正交，于是

∑
j xjαj = 0（因 αi为基），矛盾。所以 det(G) 6= 0。

充分性：
若 det(G) 6= 0，即 G = ATA可逆，说明 A的列线性无关。
⇒向量组 α1, . . . , αn 线性无关。
又因为它们共有 n个向量，V 是 n维欧氏空间，故该向量组为 V 的一组基。
综上，充要条件为 det(G) 6= 0。

练习 8.11 (P257 32(2))

♣
设αi在一组标准正交基下的坐标为xi，i = 1, 2, . . . , n，记X = (x1, . . . ,xn) ∈ Rn×n，则 det(G) = det(X)2。

解 αi = X 的第 i列。G = ((αi, αj)) = XTX。
所以

det(G) = det(XTX) = det(XT ) det(X) = [det(X)]2
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8.1 习题解答

证毕。

练习 8.12 (P283 1(4))

♣

将下列二次型表示成矩阵形式：

Q(x1, x2, . . . , xn) =

n−2∑
i=1

(xi − xi+2)
2.

解展开单项：
(xi − xi+2)

2 = x2
i − 2xixi+2 + x2

i+2

所以

Q(x1, . . . , xn) =

n−2∑
i=1

(
x2
i − 2xixi+2 + x2

i+2

)
按各项分类，x2

k 的系数为它作为 i和 i+2出现的次数：- x2
1和 x2

2都只出现在 i = 1, 2；- x2
k（3 ≤ k ≤ n− 2）出

现在两项中，i = k − 2和 i = k；- x2
n−1, x

2
n 只在最后两项。

中间项 −2xixi+2 在 (i, i+ 2)和 (i+ 2, i)处对称。
构造矩阵 A = (aij)n×n，有

Q(x) = xTAx

其中

aii =

2, 1 ≤ i ≤ n, 3 ≤ i ≤ n− 2

1, i = 1, 2, n− 1, n

ai,i+2 = ai+2,i = −1, 1 ≤ i ≤ n− 2

其余 aij = 0。
即

A =



1 0 −1 0 · · · 0

0 1 0 −1 · · · 0

−1 0 2 0 · · · 0

0 −1 0 2 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 1


n×n

其中主对角线上两端为 1，中间为 2，与其相距 2的次对角线为 −1。

练习 8.13 (P283 3(3))

♣

用配方法将下列二次型化为标准形，并求相应的可逆线性变换：

Q = x1x2 + x2x3 + x3x4 + x4x1.

解注意到：

Q = (x1 + x3)(x2 + x4) =
1

4
(x1 + x2 + x3 + x4)

2 − 1

4
(x1 − x2 + x3 − x4)

2 =
1

4
y21 −

1

4
y22

具体变换为： 

y1 = x1 + x2 + x3 + x4

y2 = x1 − x2 + x3 − x4

y3 = x3

y4 = x4
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8.2 补充题

反解可以得到： 

x1 = 1
2y1 +

1
2y2 − y3

x2 = 1
2y1 −

1
2y2 − y4

x3 = y3

x4 = y4

这对应变换矩阵 
1
2

1
2 −1 0

1
2 − 1

2 0 −1
0 0 1 0

0 0 0 1



8.2 补充题

8.2.1 一般线性空间的 Schimidt正交化

练习 8.14

♣
在 R4[x]中定义内积 (f(x), g(x)) =

∫ 1

0
f(x)g(x) dx，求 R4[x]的一组标准正交基。

解基：1, x, x2, x3 两两内积 (xk, xj) =
∫ 1

0
xk+jdx = 1

k+j+1。这组基的 Gram方阵

G =


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7


进行 Gram-Schmidt正交化过程，最终得到

(I, PT ) =


1 0 0 0 1 0 0 0

0 1
12 0 0 0 1 0 0

0 0 1
180 0 0 − 1

2 1 0

0 0 0 1
2800 0 1

20 − 3
2 1


⇒ P =

(
1
√
3(2x− 1)

√
5(6x2 − 6x− 1)

√
7(20x3 − 30x2 + 12x− 1)

)
所以，

(
1,
√
3(2x− 1),

√
5(6x2 − 6x− 1),

√
7(20x3 − 30x2 + 12x− 1)

)
构成 R4[x]的标准正交基。

8.2.2 三维正交变换的几何性质

练习 8.15
设 A = (aij)是三阶正交矩阵，且 detA = 1，求证：

1. λ = 1必为 A的特征值；
2. 存在正交矩阵 T，使得

TTAT =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ


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8.2 补充题

♣
3. θ = arccos

(
trA− 1

2

)
。

解 (1) A的特征多项式 φA(λ)是系数为实数的 3次多项式，至少有一个实根 λ1。设

φA(λ) = (λ− λ1)g(λ),

其中 g(λ)是系数为实数的 2次多项式，根 λ2, λ3 要么为实数，要么共轭虚数。
由于 λ1, λ2, λ3 是 A的全部特征值，且 λ1λ2λ3 = detA = 1，所以三者的乘积为 1。
若三根都实，只可能±1；但若三根全为−1，则乘积为−1，与 detA = 1矛盾；若两虚根共轭，则设 λ2 = λ̄3，

则
λ1 =

1

|λ2|2
⇒ |λ2| = 1⇒ λ2λ̄2 = 1⇒ λ1 = 1.

因此，无论何种情形，A至少有一个特征值为 1。
(2)设 X1 是 A的特征值 1的特征向量，则单位向量

P1 =
1

|X1|
X1

也为特征值 1 的单位特征向量。令 P1 为正交基 S = {P1, P2, P3} 的第一列，其余两列正交补齐，使得 T =

(P1, P2, P3)为正交矩阵。
令

B = T⊤AT,

由于 T 是正交矩阵，A是正交矩阵，故 B 也是正交矩阵。

AT = A(P1, P2, P3) = (P1, AP2, AP3) = (P1, P2, P3)B

由此可知 B 的第一列为 (1, 0, 0)⊤,于是 B 可写为：

B =


1 b12 b13

0 b22 b23

0 b32 b33


由于 B 仍为正交矩阵，其列向量两两正交且单位长度，说明 (b12, b13) 与 (b22, b23)，(b32, b33) 构成了一个

2× 2正交矩阵 B2。
又 detB = detA = 1,容易验证这样的二维矩阵一定形如，

B2 =

(
cos θ − sin θ

sin θ cos θ

)
是一个旋转据矩阵。

从而

B = T−1AT =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ


(3)由 B 与 A相似，故有 trA = trB = 1 + 2 cos θ，于是：

cos θ =
trA− 1

2
⇒ θ = arccos

(
trA− 1

2

)
■

练习 8.16

♣

在三维空间中，先绕 z 轴旋转角 α，再绕 x轴旋转角 β，这两个旋转的复合变换是否仍是绕某条轴的旋
转? 如果是，找出旋转轴 L和旋转角 θ。
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8.2 补充题

解复合变换是旋转：两个旋转变换 σ1 : X 7→ AX , σ2 : X 7→ BX 的复合变换 σ2σ1 : X 7→ (BA)X 的矩阵为：

K = BA =


cosβ − sinβ 0

sinβ cosβ 0

0 0 1



cosα 0 − sinα

0 1 0

sinα 0 cosα

 =


cosβ cosα − sinβ − cosβ sinα

sinβ cosα cosβ − sinβ sinα

sinα 0 cosα


由 A, B 是正交方阵可知K = BA是正交矩阵。且 detK = 1，说明K 为旋转矩阵。
因此 σ2σ1 : X 7→ KX 是绕某过原点 O的直线 L的旋转。
求旋转轴
我们要求旋转轴 L。旋转轴上的所有向量 X 在旋转变换 σ2σ1 下不动，即为KX = X。
故解方程组 (K − I)X = 0得旋转轴 L。
计算K − I：

K − I =


cosβ cosα− 1 − sinβ − cosβ sinα

sinβ cosα cosβ − 1 − sinβ sinα

sinα 0 cosα− 1


通过初等行变换可得：

消元后等价于


cosβ − 1 − sinβ cosα sinβ sinα

0 −1− cosα sinα

0 sinα cosα− 1


将上三行相加得：

(
sinα sinβ

1− cosβ
, 1,

sinα

1− cosα

)T

λ, λ ∈ R

即旋转轴 L为：

L =

λ


sin β

1−cos β

1
sinα

1−cosα


 =

λ


cot β

2

1

cot α
2




这就是所求的旋转轴。
求旋转角 θ

cos θ =
tr(BA)− 1

2
=

cosβ + cosβ cosα+ cosα− 1

2

=
(1 + cosα)(1 + cos β)

2
− 1 = 2 cos2

α

2
cos2

β

2
− 1

cos
θ

2
=

√
1 + cos θ

2
= cos

α

2
cos

β

2
■
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第 9章 第九次习题课

9.1 习题解答

练习 9.1 (P284 4(3))

♣

用初等变换法将下列二次型化成标准形，并求相应的可逆线性变换

(1) Q = xT


2 1 1

1 3 2

1 2 1

x (2) Q = xT


0 −1 0

−1 1 1

0 1 1

x

(3) Q = xT


0 1 1

1 0 −1
1 −1 0

x (4) Q = xT


0 1

2 0 1
2

1
2 0 0 1

2

0 0 1
2 0

1
2

1
2 0 0

x

解 

0 1 1

1 0 −1
1 −1 0

1 0 0

0 1 0

0 0 1


C1←C1+C3−−−−−−−−→



1 1 1

0 0 −1
1 −1 0

1 0 0

0 1 0

1 0 1


R1←R1+R3−−−−−−−−→



2 0 1

0 0 −1
1 −1 0

1 0 0

0 1 0

1 0 1



C1←C1+C2−−−−−−−−→



2 0 1

0 0 −1
0 −1 0

1 0 0

1 1 0

1 0 1


R1←R1+R2−−−−−−−−→



2 0 0

0 0 −1
0 −1 0

1 0 0

1 1 0

1 0 1


记初等变换后的矩阵为 P̂。则有

P̂ =


1 0 0

1 1 0

1 0 1

 .

记原来的矩阵为 A。则有

P̂TAP̂ =


2 0 0

0 0 −1
0 −1 0

 = Â

且有

Â =


1 0 0

0 1√
2
− 1√

2

0 1√
2

1√
2


T 

2 0 0

0 −1 0

0 0 1



1 0 0

0 1√
2
− 1√

2

0 1√
2

1√
2





9.1 习题解答

因此变换矩阵为

P =


1 0 0

1 1 0

1 0 1



1 0 0

0 1√
2
− 1√

2

0 1√
2

1√
2


T

.

（注意此时右乘的矩阵是正交阵，因此这里的右乘可以直接转置。）
标准型为

Q̃(y1, y2, y3) = 2y21 + y22 − y23 .

练习 9.2 (P285 5(3))

♣

求正交变换化下列实二次型为标准型：

Q = 6x1x2 + 6x1x3 + 6x2x3.

解
首先，此题对应的实对称矩阵为:

A =


0 3 3

3 0 3

3 3 0


计算可得 A的特征多项式为

pA(λ) = det(λI −A) =

∣∣∣∣∣∣∣∣
λ −3 −3
−3 λ −3
−3 −3 λ

∣∣∣∣∣∣∣∣ = (λ− 6)(λ+ 3)2

故 A的特征值为 λ1 = 6，λ2 = −3（二重）.
对 λ1 = −3，求解 (−3I −A)x = 0，得特征向量 x1 = (−1, 1, 0)T 和 x2 = (−1, 0, 1)T .
将它们标准正交化会得到 e1 = 1√

2
(−1, 1, 0)T 和 e2 = 1√

6
(−1,−1, 2)T .

对 λ2 = 6，求解 (6I −A)x = 0，得特征向量 x3 = (1, 1, 1)T，将它标准正交化会得到 e3 = 1√
3
(1, 1, 1)T .

所以，记

T = (e1, e2, e3) =


−1/
√
2 −1/

√
6 1/

√
3

1/
√
2 −1/

√
6 1/

√
3

0 2/
√
6 1/

√
3

 .

则正交阵 T 就会有:

T−1AT =


−3

−3
6


此时的标准型为 Q̃(y1, y2, y3) = −3y21 − 3y22 + 6y23 .�
笔记正交变换化的流程可以看书本的定理 7.3.4和后续例题.

练习 9.3 (P284 7)

♣证明：秩等于 r的对称矩阵可以被表成 r个秩等于 1的对称矩阵的和.

证明 本题是一个经典的由特殊到一般化的例子：
特殊情况：若对称矩阵 A有 rank(A) = r，且 A是对角阵，不妨设

A = diag(a1, a2, · · · , ar, ar+1, · · · , an)

其中 ai = 0 (i > r).（否则，通过初等变换阵 Sij 可以将 A转换为这种形式）
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9.1 习题解答

此时我们取 Ai = diag(0, 0, · · · , ai, 0, · · · , 0)为仅有对角线第 i个为 ai，其他为 0的对角阵，就有：

A =

r∑
i=1

Ai 且 rank(Ai) = 1.

一般情况：设 B 为一个秩为 r的对角阵，它的特征值 λ1 到 λr 不为 0，而 λr+1 到 λn 为 0.
由正交相似对角化的知识，可以有：存在正交阵 P 使得

PTBP = diag(λ1, λ2, · · · , λn).

记 B̃ = diag(λ1, λ2, · · · , λn)，由上述过程，存在 B̃i = diag(0, 0, · · · , λi, 0, · · · , 0)使得

B̃ =

r∑
i=1

B̃i 且 rank(B̃i) = 1.

这时候我们只需要取 Bi = PB̃iP
T 就有

B = PB̃PT =

r∑
i=1

PB̃iP
T =

r∑
i=1

Bi 且 rank(Bi) = rank(B̃i) = 1.

练习 9.4 (P285 16(2))

♣

参数 t满足什么条件时，下列二次型正定？

(2) Q(x1, x2, x3) = x2
1 + 2x2

2 + 3x2
3 + tx1x2 + tx1x3 + x2x3

解此题对应的实对称矩阵为：

A =


1 t

2
t
2

t
2 2 1

2
t
2

1
2 3


要求 A正定，实际上就是需要： ∣∣∣1∣∣∣ > 0 且

∣∣∣∣∣1 t
2

t
2 2

∣∣∣∣∣ > 0 且 det(A) > 0

整理式子就有： 2− t2/4 > 0

46− 8t2 > 0

从而参数 t需要满足 |t| <
√
23
2 .�

笔记关于二次型和矩阵的正定性请翻阅书本的定理 8.5.3和例题.

练习 9.5 (P286 20)

♣

设有 n元二次型

Q(x1, x2, · · · , xn) = (x1 + a1x2)
2 + (x2 + a2x3)

2 + · · ·+ (xn−1 + an−1xn)
2 + (xn + anx1)

2

其中 ai (i = 1, · · · , n)为实数，试问：当 a1, · · · , an 满足何种条件时，Q(x1, x2, · · · , xn)为正定二次型？

解方法一:直接的判断：
比较明显的会发现:Q(x1, x2, · · · , xn) ≥ 0，所以我们仅需要考虑 Q = 0的特殊情况：

Q = 0⇔存在 (x1, x2, · · · , xn) 6= 0⃗,使得xi + aixi+1 = 0
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9.1 习题解答

也就是说，取矩阵

A =



1 a1 0 · · · 0

0 1 a2 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

an 0 0 · · · 1


则，为了保证 Q的正定性，线性方程组 Ax = 0没有非零解.

计算这个行列式（实际上，习题 5.12的第 6问有提及类似行列式的计算）：

det(A) = 1×

∣∣∣∣∣∣∣∣∣∣∣

1 a2 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
− a1 ×

∣∣∣∣∣∣∣∣∣∣∣

0 a2 0 · · · 0

0 1 a3 · · · 0
...

...
...

. . .
...

an 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
= 1 + (−1)n−1

n∏
i=1

ai

所以 Q正定至少要求 det(A) 6= 0也就是
∏n

i=1 ai 6= (−1)n−1

方法二：回到矩阵的正定性
二次型 Q对应的矩阵为

G =



a2n + 1 a1 0 · · · an

a1 a21 + 1 a2 · · · 0

0 a2 a22 + 1 · · · 0
...

...
...

. . .
...

an 0 0 · · · a2n−1 + 1


按照题目 8.16的验证方法，对 k < n的 k阶顺序主子式：∣∣∣∣∣∣∣∣∣∣∣∣∣

a2n + 1 a1 0 · · · 0

a1 a21 + 1 a2 · · · 0

0 a2 a22 + 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · a2k−1 + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (a2n + 1)

k−1∏
i=1

(a2i + 1)− a21

k−1∏
j=2

(a2j + 1) = 1 + f(a1, a2, · · · , an)

这里我写 f 是因为这个多项式一定非负（每一项都是平方项）
最后，可以通过第一行展开，最后归纳计算获得：

det(G) = (1 + (−1)n−1
n∏

i=1

ai)
2

时间关系这里不再列出.�
笔记犹豫了一下还是写了方法二，8.20这道题可以用法一本质上还是因为巧合，可以用检验取等条件的方法去
做，方法二才是这种题目更为一般的方法，当然这样的方法还是要求大家耐心细致的计算.

练习 9.6 (P286 22)

♣设 A为 n阶实对称矩阵，证明：若 A正定，则对任意正整数 k，Ak 正定.

证明 沿用定理 8.5.3的判断方式：

A正定⇔ A的特征值λi > 0 (∀1 ≤ i ≤ n)
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9.1 习题解答

回忆作业题有结论：若 λ为 A的特征值，则 λk 为 Ak 的特征值，所以立马有：

λk
i > 0 (∀1 ≤ i ≤ n)⇒ Ak 正定

练习 9.7 (P285 13)

♣

在三维空间直角坐标系中，给定曲面方程

2x2 + 4y2 + 5z2 − 2xy + 4xz + 6yz − 20 = 0.

利用正交变换将其变为标准型.该方程表示什么曲面？

解二次型对应的矩阵为

A =


2 −1 2

−1 4 3

2 3 5


然后立刻就有

pA(λ) = det(λI −A) =

∣∣∣∣∣∣∣∣
λ− 2 1 −2
1 λ− 4 −3
−2 −3 λ− 5

∣∣∣∣∣∣∣∣ = λ3 − 11λ2 + 24λ+ 11 = 0

很遗憾，这个三次方程并没有有理数的解（试根法，具体这里省略），所以我们只判断特征值的正负性.
由一元高次方程 V ieta定理，如果 A的特征值极为 λ1 ≥ λ2 ≥ λ3，那么我们可以发现

λ1 + λ2 + λ3 = 11

λ1 ∗ λ2 + λ2 ∗ λ3 + λ3 ∗ λ1 = 24

λ1 ∗ λ2 ∗ λ3 = −11

由第一个式子:λ1 > 0，再由最后一个式子：三个特征值要么一个是负的，要么全是负的，结合起来可以发现：

λ1 ≥ λ2 > 0 > λ3

于是实二次型的曲面为双曲面�
笔记其实这道题可以算出来具体的特征值，可见：一元三次方程求根公式，这里不做展开.

然而，考试中遇到数据比较抽象的题目，或者一时计算不顺解不出来时，可以通过本题的方法大致判断特
征值的正负性.
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9.2 期末补充习题

9.2 期末补充习题

练习 9.8

♣

在 n维欧氏空间 V 中，设线性无关向量组 α1, . . . , αm 经过 Schmidt正交化方法，变成 β1, . . . , βm，进而
形成正交向量组。这两组向量的 Gram矩阵分别为 G和 G′。
证明：

|G| = |G′| = ‖β1‖2‖β2‖2 · · · ‖βm‖2 ≤ ‖α1‖2‖α2‖2 · · · ‖αm‖2

证明 记 α1, . . . , αm = (ε1, . . . , εn)P , P ∈ Rn×m，则

(α1, . . . , αm) = (β1, . . . , βm)TQ, Q ∈ Rm×m 为单位上三角矩阵⇒ |Q| = 1

设 C = (β1, . . . , βm) = (α1, . . . , αm)Q−1，则

G = PTP, G′ = (β1 · · ·βm)T (β1 · · ·βm) = PQ−1
T

Q−1PT

⇒ |G′| = |PQ−1
T

Q−1PT | = |Q−1
T

Q−1||PTP | = |PTP | = |G|

⇒ |G′| = |G|

由于 C = (β1, . . . , βm)正交，故 G′ = diag(‖β1‖2, . . . , ‖βm‖2)，则

|G′| = ‖β1‖2 · · · ‖βm‖2

αs = βs +

s−1∑
j=1

λsjβj ⇒ ‖αs‖2 ≥ ‖βs‖2 ⇒
m∏
j=1

‖αj‖2 ≥
m∏
j=1

‖βj‖2 ⇒ |G| ≤
m∏
j=1

‖αj‖2

练习 9.9

♣

（Hadamard不等式）：设 C = (cij) ∈ Rn×n，证明：

|C|2 ≤
n∏

j=1

(c21j + · · ·+ c2nj)

证明
|CTC| = |G|2, G = CTC,记C = (C1, . . . , Cn)

⇒
n∏

j=1

(c21j + · · ·+ c2nj) =

n∏
j=1

‖Cj‖2 ⇒即证同上不等式。

练习 9.10

♣

设 A,B 为 n阶实对称矩阵，证明：

AB = BA ⇐⇒ ∃P正交，使得PTAP = Λ1, P
TBP = Λ2, Λ1,Λ2 为对角阵

证明 (⇐)存在正交矩阵 P，使得
PTAP = Λ1, PTBP = Λ2

则
AB = PΛ1P

TB = PΛ1(P
TB) = PΛ1Λ2P

T

同理，
BA = PΛ2Λ1P

T ⇒ Λ1Λ2 = Λ2Λ1 ⇒ AB = BA
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9.2 期末补充习题

(⇒)

若 AB = BA且 A,B 为对称矩阵，则存在正交矩阵 P，使得 PTAP = Λ1。
设 Λ1 = diag(λ1In1

, . . . , λsIns
)，则 A = PΛ1P

T

则
AB = PΛ1P

TB = BPΛ1P
T = BA

记 B̃ = PTBP，则
Λ1B̃ = B̃Λ1

因为 Λ1 为对角阵，与 B̃ 可交换，故 B̃ 为准对角阵。

B̃ = diag(B1, B2, · · · , Bs)

再由 B̃ 为实对称的，且为准对角阵, i.e.可以对对角上的矩阵进行正交相似对角化：

Bi = QT
i Λni

Qi

记
Q = diag(Q1, · · · , Qs)

则有 QTQ = In，因此记 P̃ = PQT，A、B 可以同时被 P̃ 对角化。�
笔记这题可以作为很多证明题的引理。简言之：矩阵乘法可交换等价于可同时对角化。

练习 9.11

♣

设 A > 0，AT = A，B 为 n阶半正定对称矩阵，证明：

|A+B| ≥ |A|+ |B|

证明 由于 A > 0，即正定，⇒ ∃P 可逆，使得 PTAP = I，PTBP = D = diag(µ1, µ2, . . . , µn)。
注：先用定理 8.3.1，将 A相合对角化到单位阵。此时变换后的矩阵 B̃ 是实对称的，可以正交相似对角化。

我们记这两次变换的矩阵为 P，就有上面的结果。
注意：本题并没有使用上一题的引理，因为没有 AB = BA的条件。
则有：

A = (PT )−1IP−1, B = (PT )−1DP−1

A+B = (PT )−1(I +D)P−1 = (PT )−1diag(1 + µ1, 1 + µ2, . . . , 1 + µn)P
−1

所以：

|A+B| = |(PT )−1| ·
n∏

i=1

(1 + µi) · |P−1| = |P−1|2
n∏

i=1

(1 + µi)

又因为：
|A| = |P−1|2, |B| = |P−1|2 · µ1µ2 · · ·µn

故：

|A+B| = |P−1|2
n∏

i=1

(1 + µi) ≥ |P−1|2 (1 + µ1µ2 · · ·µn) = |A|+ |B|

等号成立当且仅当：
µ1 = µ2 = · · · = µn = 0
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9.3 期末复习
复习顺序：

1. 书上基本的定义、定理、证明、例子：请尽量掌握 6、7、8章课本上较为基础的证明（尤其是涉及空间的
证明），较复杂的证明可以适当了解思路；

2. 老师布置的作业题（可以对照习题课讲义进行复习）；
3. 往年卷，习题课讲义中的补充题：习题课讲义中的补充内容可能会作为出题的考点，例如期中考试的广义
逆。可以适当了解，如果对补充内容有疑问请迅速询问助教；

4. 其他资料（如线性代数学习指导（李尚志）等）。

复习提纲

第六章 线性变换

定义 6.1.1. 设 A : x ∈ Fn → y ∈ Fm 是数组空间 Fn 到 Fm 的映射。如果

y = Ax (6.1)

其中 A ∈ Fm×n，则称 A 为线性映射。特别地，Fn 到 Fn 上的线性映射称为 Fn 上的线性变换。

定理 6.1.1. 线性映射（6.1）的像的集合 Im(A ) := {Ax | x ∈ Fn}是 A的列空间，称为 A 的像空间。线性映射
（6.1）的核Ker(A ) := {x ∈ Fn | Ax = 0}为 Fn 的零空间，也称为 A 的核空间。且

dim(Im(A )) = rank(A), dim(Ker(A )) = n− rank(A), dim(Im(A )) + dim(Ker(A )) = n.

推论 6.1.1. 用 A 表示线性映射（6.1），则有
1. A 是单射⇔ rank(A) = n。
2. A 是满射⇔ rank(A) = m。
3. A 是双射⇔ rank(A) = m = n，即 A为可逆方阵。

定义 6.2.1. 设 A 是数组空间 Fn上的线性变换，其变换公式为 y = Ax，这里 A ∈ Fn×n，x,y ∈ Fn。如果存在
λ ∈ F 及非零列向量 x ∈ Fn，使得

A x = λx （或者Ax = λx） (6.3)

则称 λ为线性变换 A（或者方阵 A）的一个特征值，而称 x为属于特征值 λ的一个特征向量。

定理 6.2.1. 设 λ ∈ F 是矩阵 A ∈ Fn×n 的特征值，则

VA(λ) = {x ∈ Fn | Ax = λx}

是 Fn 的子空间，称为矩阵 A的属于特征值 λ的特征子空间，即特征子空间 VA(λ)由 λ的所有特征向量与零向
量一起构成。

定义 6.2.2. 设 A为 n阶方阵，称行列式 det(λI −A)为矩阵 A的特征多项式，记为 pA(λ)。

复数域 C上的方阵 A的特征值和特征向量的算法可归纳如下：
1. 计算特征多项式 pA(λ) = det(λI −A)。设

pA(λ) = (λ− λ1)
n1(λ− λ2)

n2 · · · (λ− λs)
ns ,

其中 λi ∈ C, ni ≥ 1 (i = 1, 2, . . . , s)且 n1 + n2 + · · · + ns = n。则 λ1, λ2, . . . , λs 为 A的全部不同的特征
值，其重数分别为 n1, n2, . . . , ns。
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9.3 期末复习

2. 对每个特征值 λi，求解方程组
(λiI −A)x = 0.

设 xi1,xi2, . . . ,ximi
为它的一个基础解系，则所有的非零线性组合

c1xi1 + c2xi2 + · · ·+ cmi
ximi

为 A的属于 λi 的所有特征向量。

例 6.2.3. 设 λ为 n阶方阵 A的一个特征值，证明：
1. λk 为 Ak 的特征值，其中 k为正整数；
2. λ为 AT 的特征值；
3. 若 λ 6= 0，则

1

λ
det(A)为 A的伴随方阵 A∗ 的特征值。

命题 6.2.1. 设 A = (aij)为 C上的一个 n阶方阵，λ1, λ2, . . . , λn 为 A的 n个特征值，则

1. Tr(A) =

n∑
i=1

λi；

2. det(A) = λ1λ2 · · ·λn。

推论 6.2.1. n阶方阵可逆当且仅当它的 n个特征值都不为零。

定义 6.3.1. 设 A,B ∈ Fn×n。若存在可逆方阵 T ∈ Fn×n满足 B = T−1AT，则称方阵 A与 B（在数域 F 上）相
似。

特别地，若 F = R，则称 A与 B 实相似；若 F = C，则称 A与 B 复相似。矩阵相似是一种重要的等价关
系。容易验证，相似矩阵满足以下性质：

1.（反身性）A与 A相似；
2.（对称性）若 A与 B 相似，则 B 与 A相似；
3.（传递性）若 A与 B 相似，B 与 C 相似，则 A与 C 相似。
由于相似关系为等价关系，可以将 n阶方阵按相似关系进行分类：将相互之间相似的方阵归成一类。两个

类要么是一样的，要么就不相交。每个类称为一个相似类，该类中的每个元素称为一个代表元。

命题 6.3.1. 相似的矩阵具有相同的特征多项式和特征值。

定理 6.3.1. 数域 F 上的 n阶方阵 A相似于对角阵的充分必要条件是，A有 n个线性无关的特征向量。

引理 6.3.1. 设 A为数域 F 上的 n阶方阵，则属于 A的不同特征值的特征向量是线性无关的。

推论 6.3.1. 如果矩阵 A的 n个特征值两两不同，则 A相似于对角阵。

定理 6.3.2. 任何一个 n阶复方阵 A都可以相似于一个上三角阵，且该上三角阵的主对角线上的元素都是 A的特
征值。

定义 6.4.1. 设 V, V ′ 为数域 F 上的两个线性空间，若映射 A : V → V ′ 满足：对任意 α, β ∈ V, λ ∈ F，都有

A (α+ β) = A (α) + A (β) (6.8)

A (λα) = λA (α) (6.9)

则称A 为从线性空间 V 到线性空间 V ′的线性映射。特别地，如果 V ′ = V，则称A 为线性空间 V 上的一个线
性变换。

例 6.4.1. 把每个向量映为自身的变换
E : E (x) = x, x ∈ V
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9.3 期末复习

是线性变换，称为单位变换或恒等变换。
把空间中的每个向量都映为零向量的变换 O : O(x) = 0, x ∈ V 也是一个线性变换，称为零变换。

定理 6.4.1. 设 V 是数域 F 上的线性空间，A 是 V 上的线性变换。A 具有以下性质：
1. A (θ) = θ；
2. A (−α) = −A (α), α ∈ V；
3. A (λ1α1 + λ2α2 + · · ·+ λnαn) = λ1A (α1) + λ2A (α2) + · · ·+ λnA (αn)；
4. 设 α1, α2, . . . , αn 为线性空间 V 的一组基，若 α = λ1α1 + λ2α2 + · · ·+ λnαn，则

A (α) = λ1A (α1) + λ2A (α2) + · · ·+ λnA (αn)

5. 若 α1, α2, . . . , αm 为 V 中线性相关的向量，则 A (α1),A (α2), . . . ,A (αm)也线性相关。

定理 6.4.2. 设 A 是线性空间 V 上的线性变换。A 的像的全体 Im(A ) := {A α | α ∈ V }是 V 的子空间，称为
A 的像空间。A 的核Ker(A ) := {α ∈ V | A α = θ}也为 V 的子空间，称为 A 的核空间。

记
A (α1, α2, · · · , αn) = (A (α1),A (α2), · · · ,A (αn)),

则上述式可以改写成
A (α1, α2, · · · , αn) = (α1, α2, · · · , αn)A, (6.10)

其中矩阵 A = (aij)n×n 称为线性变换 A 在基 α1, α2, · · · , αn 下的矩阵。

定理 6.4.3. 设线性空间 V 上的线性变换A 在基 {α1, α2, · · · , αn}下的矩阵为 A。β = A α, α, β ∈ V。若 α, β在
基 {α1, α2, · · · , αn}下的坐标分别为 x,y ∈ Fn，则

y = Ax. (6.11)

定理 6.4.4. 设线性空间 V 上的线性变换 A 在基 {α1, α2, · · · , αn}下的矩阵为 A。则
1. Im(A ) = {(α1, α2, · · · , αn)y | y ∈ C(A)}，Ker(A ) = {(α1, α2, · · · , αn)x | x ∈ N(A)}。其中 C(A), N(A)

分别为矩阵 A的列空间与零空间。
2. dim(Im(A )) = r(A), dim(Ker(A )) = n− r(A), dim(Im(A )) + dim(Ker(A )) = n。

推论 6.4.1. 设线性空间 V 上的线性变换 A 在基 {α1, α2, · · · , αn}下的矩阵为 A。则 A 可逆当且仅当矩阵 A可
逆。

定理 6.4.5. 设线性空间 V 上的线性变换 A 在 V 的两组基 α1, α2, · · · , αn和 β1, β2, · · · , βn下的矩阵分别为 A和
B。设基 α1, α2, · · · , αn 到基 β1, β2, · · · , βn 的过渡矩阵为 T，即

(β1, β2, · · · , βn) = (α1, α2, · · · , αn)T

则
B = T−1AT.

即矩阵 A与 B 相似。

定义 6.4.2. 设 V 是数域 F 上 n维线性空间，A 为 V 上的线性变换。如果存在 λ ∈ F 及非零向量 α ∈ V 满足
A α = λα，则称 λ为线性变换A 的一个特征值，α称为属于特征值 λ的一个特征向量。称所有对应特征值 λ的
特征向量全体（包括零向量）

VA (λ) = {α ∈ V | A α = λα},

为属于特征值 λ的特征子空间。
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命题 6.4.1. 设 V 是数域 F 上 n 维线性空间，α1, α2, · · · , αn 是 V 的一组基。线性变换 A : V → V 在基
α1, α2, · · · , αn 下的矩阵为 A，则：

1. 线性变换 A 与矩阵 A有相同的特征值；
2. 设 λ为 A 的一个特征值，则

VA (λ) = {(α1, α2, · · · , αn)x | x ∈ VA(λ)}.

设线性空间 V 上的线性变换 A 在一组基 {α1, . . . , αn}下的矩阵为 A。由于相似矩阵具有相同的特征多项式与
特征值，因此可以定义线性变换 A 的特征多项式

pA (λ) = pA(λ),

行列式 det(A ) = det(A)，秩 rank(A ) = rank(A)，迹 Tr(A ) = Tr(A)。

命题 6.4.2. 线性变换 A 可逆当且仅当 A 的特征值都不为零。

命题 6.4.3. n维线性空间上的线性变换 A 可对角化当且仅当 A 有 n个线性无关特征向量。

命题 6.4.4. 若线性变换 A 的特征值都不相等，则 A 可对角化。
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第七章 内积空间及变换

定义 7.1.1. 设 Rn 是实数域 R上的 n维数组空间。对任意（列）向量 a,b ∈ Rn，定义它们的内积为

(a,b) := aTGb (7.4)

其中 G ∈ Rn×n称为度量矩阵，它是满足对任意 a ∈ Rn, a 6= 0时有 aTGa > 0的 n阶实对称方阵，称为实对称
正定方阵。定义了内积（7.4）的数组空间 Rn 称为欧几里得（Euclid）空间，简称欧氏空间。

同三维几何空间向量的内积一样，欧氏空间的内积满足以下性质：
1. 对称性：即对任意两个向量 a,b ∈ Rn，有

(a,b) = (b,a) (7.6)

2. 线性性：即对任意一个实数 λ和任意三个向量 a,b, c ∈ Rn，有

(λa,b) = λ(a,b) (7.7)

(a+ b, c) = (a, c) + (b, c) (7.8)

3. 正定性：即对于任意一个向量 a ∈ Rn，都有 (a,a) ≥ 0，且等号成立当且仅当 a = 0。

定义 7.1.2. 设 a ∈ Rn，称
|a| =

√
(a,a) (7.10)

为向量 a的长度或模。
显然，|a| = 0的充分必要条件是 a为零向量。当 |a| = 1时，称 a为单位向量。对于任意一个非零向量 a，

向量 1
|a|a为单位向量。因此通过这样的方式可以把任意一个非零向量“压缩”（或“放大”）为一个单位向量，这

个过程称为向量的单位化。

定理 7.1.1.（Cauchy-Schwarz不等式）对两个任意向量 a,b ∈ Rn，均有

|(a,b)| ≤ |a| · |b|. (7.11)

等号成立当且仅当 a与 b线性相关。

向量之间的距离满足：
对称性：d(a,b) = d(b,a)；
正定性：d(a,b) ≥ 0，等号成立当且仅当 a = b；
三角不等式：d(a,b) ≤ d(a, c) + d(c,b)。
由 Cauchy-Schwarz不等式还可以得到：

−1 ≤ (a,b)

|a||b|
≤ 1.

由此可以定义两向量的夹角。

定义 7.1.3. 对于 Rn 中两个非零向量 a和 b，定义它们之间的夹角为

θ = arccos

(
(a,b)

|a||b|

)
. (7.13)

特别地，当 (a,b) = 0时，称向量 a和 b正交或垂直，记作 a ⊥ b。

命题 7.1.1. 设 a,b ∈ Rn，则 a ⊥ b当且仅当

|a+ b|2 = |a|2 + |b|2.

设W ⊂ Rn 是 Rn 的线性子空间。作为欧氏空间 Rn，其内积自然也作用在W 上。因此，赋予了内积的线
性子空间W 也成为一个欧氏空间，称为欧氏空间 Rn 的子空间。
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定义 7.2.1在 n维欧氏空间 Rn 中，一组两两正交的非零向量称为正交向量组。由正交向量组构成的基称为正交
基。由单位向量组构成的正交基称为标准正交基。

命题 7.2.1设 a1,a2, . . . , ar 为欧氏空间 Rn 中的非零正交向量组，则 a1,a2, . . . , ar 线性无关。

定理 7.2.1（Schmidt正交化）从 n维欧氏空间 Rn 的任意一组基出发，可以构造一组标准正交基。

定理 7.2.2 n阶实方阵 Q为正交矩阵当且仅当 Q的行（或列）向量构成 Rn 的一组标准正交基。

定理 7.2.3正交矩阵有下列性质：
(1) 单位阵是正交方阵。
(2) A,B 为同阶正交方阵，则 AB 也是正交方阵。
(3) 设 A是正交方阵，则 AT = A−1 也是正交方阵。

§7.2标准正交基
(4) 正交方阵的行列式的值为 1或 −1。
(5) 正交方阵的特征值的模长为 1。

命题 7.2.2设 u1, . . . ,un 为 Rn 的一组标准正交基，则任意 a ∈ Rn，

a = (a,u1)u1 + (a,u2)u2 + · · ·+ (a,un)un.

定义 7.2.3设W1,W2 是欧氏空间 Rn 的子空间。对向量 a ∈ Rn，若 a ⊥ b对任意 b ∈ W1 成立，则称 a ⊥ W1。
若对任意 a ∈W1,b ∈W2 都有 a ⊥ b，则称W1 与W2 正交，记为W1 ⊥W2。

定义 7.2.4设W1,W2 是欧氏空间 Rn 的子空间。则向量集合

W1 +W2 := {a+ b | a ∈W1,b ∈W2}

也是Rn的子空间，称之为子空间W1与W2的和。如果W1∩W2 = {0}，则称和W1+W2为直和，记为W1⊕W2。

定理 7.2.4设W 是欧氏空间 Rn 的子空间，则向量集合

W⊥ := {a ∈ Rn | a ⊥W}

是 Rn 的子空间，且有 Rn = W ⊕W⊥。称W⊥ 为W 的正交补空间。

定义 7.2.5设W 是欧氏空间 Rn 的子空间，x ∈ Rn。如果向量 y ∈ W 满足 x− y ⊥ W，则称 y为向量 x在W

上的正交投影，记为 y = Px。

定理 7.2.5. 设W 是欧氏空间 Rn 的子空间，u1,u2, . . . ,ur 是W 的一组标准正交基。则下列结论成立：
1. 对任意 x ∈ Rn，x在W 上的正交投影存在唯一，且

Px = (x,u1)u1 + (x,u2)u2 + · · ·+ (x,ur)ur. (7.22)

2. 对任意 y ∈W，
|x− y| ≥ |x− Px|.

等号成立当且仅当 y = Px。

定义 7.3.1. n维欧氏空间 Rn 上的正交变换定义为 A : x→ Ax，这里 x ∈ Rn，A为 n阶正交矩阵。

定理 7.3.1. 设 A : x→ Ax是 n维欧氏空间 Rn 上的线性变换。则下列命题等价：
1. A是正交变换；
2. 对任意 x ∈ Rn，|Ax| = |x|；
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3. 对任意 x,y ∈ Rn，(Ax,Ay) = (x,y)；
4. A将一组标准正交基变为另一组标准正交基；
5. A在任一组标准正交基下的矩阵为正交方阵。

定理 7.3.2. 正交变换有下列性质：
1. 恒同变换是正交变换；
2. 两个正交变换的复合是正交变换；
3. 正交变换的逆变换是正交变换；
4. 正交变换的行列式的值为 1或 −1；
5. 正交变换的特征值的模长为 1。

设 A为正交变换。若 det(A) = 1，则称 A为第一类正交变换；若 det(A) = −1，则称 A为第二类正交变换。

定义 7.3.2. n维欧氏空间 Rn 上的对称变换定义为 A : x→ Ax，这里 x ∈ Rn，A为 n阶实对称方阵。

对称变换有下列等价说法：

定理 7.3.3. 设 A : x→ Ax是 n维欧氏空间 Rn 上的线性变换。则下列命题等价：
1. A是对称变换；
2. 对任意 x,y ∈ Rn，(Ax,y) = (x,Ay)；
3. A在任一组标准正交基下的矩阵是实对称方阵。

命题 7.3.1. 实对称方阵的特征值均为实数。

命题 7.3.2. 实对称方阵的不同特征值对应的特征向量彼此正交。

定理 7.3.5. 设 A是欧氏空间 Rn 上的对称变换。则
1. A的特征值均为实数；
2. A的不同特征值对应的特征向量彼此正交；
3. 存在Rn的一组标准正交基u1,u2, . . . ,un，使得A在这组基下的矩阵为 diag(λ1, λ2, . . . , λn)，这里λ1, λ2, . . . , λn

为 A的特征值。

定义 7.4.1. 设 V 是实数域 R上的线性空间，如果 V 中任意两个向量 α和 β 都按某一法则对应于一个实数，记
作 (α, β)，且满足

(1) 对称性：即对任意两个向量 α, β ∈ V，有

(α, β) = (β, α) (7.23)

(2) 线性性：即对任意一个实数 λ和任意三个向量 α, β, γ ∈ V，有

(λα, β) = λ(α, β) (7.24)

(α+ β, γ) = (α, γ) + (β, γ) (7.25)

(3) 正定性：即对于任意一个向量 α ∈ V，有 (α, α) ≥ 0，等号成立当且仅当 α = θ。
则称 (α, β)为向量 α和 β 的内积，定义了内积的实数域 R上的线性空间 V 称为欧几里得（Euclid）空间，

简称欧氏空间。

定理 7.4.1. （Cauchy-Schwarz不等式）设 V 是欧氏空间，(·, ·)是 V 的内积，则对 V 中的任意两个向量 α和 β，
有

|(α, β)| ≤
√
(α, α)(β, β). (7.26)
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定义 7.4.2. 设 V 是欧氏空间，(·, ·)是 V 的内积，对于任意 α ∈ V，称

|α| =
√
(α, α) (7.27)

称为 α的长度或模。若 |α| = 1，则称 α为单位向量。对于欧氏空间 V 中两个非零向量 α和 β，定义它们之间的
夹角为

θ = arccos
(α, β)

|α||β|
. (7.28)

特别，当 (α, β) = 0时，称向量 α和 β 正交或垂直，记作 α ⊥ β。
一般欧氏空间中同样有勾股定理：

|α+ β|2 = |α|2 + |β|2 ⇐⇒ (α, β) = 0. (7.29)

此外，利用 Cauchy-Schwarz不等式可以证明下列三角不等式：

|α+ β| ≤ |α|+ |β|. (7.30)

一般欧氏空间的内积并没有一个具体公式。但当给定空间的一组基 α1, α2, . . . , αn后，内积可以用矩阵形式
表示。实际上，设

α =

n∑
i=1

xiαi, β =

n∑
i=1

yiαi,

则

(α, β) =

n∑
i=1

n∑
j=1

xiyj(αi, αj) = xTGy, (7.31)

其中 x = (x1, x2, . . . , xn)
T，y = (y1, y2, . . . , yn)

T，G = ((αi, αj))n×n是度量矩阵，也称为 Gram阵。由内积的
正定性知，G是实对称正定方阵。注意到，上式与欧氏空间 Rn 的内积定义（7.4）一致。

特别地，当 G = I，即 (αi, αj) = δij 时，

(α, β) = xTy. (7.32)

定义 7.4.3. 设 α1, α2, . . . , αn 为欧氏空间 V 的一组基，若 (αi, αj) = δij , i, j = 1, 2, . . . , n，则称 α1, . . . , αn 为 V

的一组标准正交基。

定理 7.4.2. （Schmidt 正交化）从 n 维欧氏空间 V 的任意一组基 α1, . . . , αn 出发，可以构造一组标准正交基
β1, . . . , βn，使得 {α1, . . . , αk} ∼ {β1, . . . , βk}, k = 1, 2, . . . , n。

定义 7.4.4. 设W1,W2是欧氏空间 V 的子空间。对向量 α ∈ V，若 α ⊥ β对任意 β ∈W1成立，则称 α与子空间
W1 正交，记为 α ⊥W1。若对任意 α ∈W1, β ∈W2 都有 α ⊥ β，则称W1 与W2 正交，记为W1 ⊥W2。

定理 7.4.3. 设W 是欧氏空间 V 的子空间，则向量集合

W⊥ := {α ∈ V | α ⊥W}

是 V 的子空间，且有 V = W ⊕W⊥。称W⊥ 为W 的正交补空间。

定义 7.4.5. 设W 是欧氏空间 V 的子空间，α ∈ V。如果向量 β ∈W 满足 α− β ⊥W，则称 β为向量 α在W 上
的正交投影，记为 β = Pα。

定理 7.4.4. 设W 是欧氏空间 V 的子空间，α1, α2, . . . , αr 是W 的一组标准正交基。则下列结论成立：
1. 对任意 α ∈ V，α在W 上的正交投影存在且唯一，且

Pα = (α, α1)α1 + (α, α2)α2 + · · ·+ (α, αr)αr.

2. 设 α ∈ V，则对任意 β ∈W，
|α− β| ≥ |α− Pα|,

110



9.3 期末复习

等号成立当且仅当 β = Pα。

定义 7.4.6. 设 V 是一个 n维的欧氏空间，A 是 V 上的一个线性变换。如果A 保持 V 的内积不变，即对于任意
的两个向量 α, β ∈ V 都有

(A α,A β) = (α, β), (7.33)

则称 A 是 V 内的正交变换。

定理 7.4.5. 设 V 是一个 n维的欧氏空间，A 是 V 上的一个线性变换，则下列命题等价：
1. A 为正交变换；
2. A 保持任意向量的模长不变；
3. A 将标准正交基变换为标准正交基；
4. A 在任一组标准正交基下的矩阵为正交矩阵。
设 A 是欧氏空间 V 上的正交变换，则 det(A ) = ±1。若 det(A ) = 1，则称 A 为第一类正交变换；若

det(A ) = −1，则称 A 为第二类正交变换。

命题 7.4.1. 设 A 是欧氏空间 V 上的第一类正交变换，且 V 的维数为奇数，则 A 一定有特征值 1。

定义 7.4.7. 设 V 是 n维欧氏空间，A 是 V 上的线性变换。如果 A 满足

(α,A β) = (A α, β) (7.34)

对 V 中任意两个向量 α和 β 成立，则称 A 是 V 上的对称变换。

定理 7.4.6. 设A 是欧氏空间 V 上的线性变换，则A 是对称变换的充要条件是A 在任意一组标准正交基下的矩
阵 A是实对称方阵。

定理 7.4.7. 设 A 是欧氏空间 V 上的对称变换，则 A 的特征值均为实数，且不同特征值对应的特征向量相互正
交。

定理 7.4.8. 设 A 是 n维欧氏空间 V 上的对称变换，则存在 V 的一组标准正交基 α1, α2, . . . , αn 使得

A αi = λiαi, i = 1, 2, . . . , n.

这里 λ1, λ2, . . . , λn 为 A 的特征值。

111



9.3 期末复习

第八章 实二次型

定义 8.1.1. 在实数域上，一个含 n个变量 x1, x2, . . . , xn 的二次型 Q(x1, x2, . . . , xn)是一个齐次的二次多项式

Q(x1, x2, . . . , xn) =

n∑
i=1

n∑
j=1

aijxixj . (8.1)

这里 aji = aij , i, j = 1, . . . , n为实系数。利用矩阵乘法运算，上式可以表示成

Q(x1, x2, . . . , xn) = xTAx, (8.2)

这里 A为 n阶实对称方阵

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

 , x = (x1, x2, . . . , xn)
T .

称实对称矩阵 A为二次型 Q(x1, x2, . . . , xn)的矩阵，A的秩称为二次型的秩。

定义 8.1.2. 对于实数域上的两个 n阶矩阵 A,B，如果存在一个可逆的实矩阵 P 使得

B = PTAP, (8.4)

则称 A和 B 是相合的，或者说 B 相合于 A，矩阵 P 称为相合变换矩阵。
注意到矩阵之间的相合关系是一种等价关系，即它具有性质：

(1) 反身性：A = ITAI，这里 I 是 n阶单位矩阵，即自身与自身相合；
(2) 对称性：如果 B = PTAP，则 A = (P−1)TBP−1，即如果 B 相合于 A，则 A相合于 B；
(3) 传递性：如果 C = QTBQ, B = PTAP，则 C = (PQ)TA(PQ)，即如果 C 相合于 B，B相合于 A，则 C

相合于 A。

定理 8.2.1. 任何一个由公式 (8.1)所定义的实二次型Q(x1, x2, . . . , xn)，均可通过配平方法找到可逆变换 x = Py，
将它化为

Q̃(y1, y2, . . . , yn) := Q(x1, x2, . . . , xn)
∣∣∣
x=Py

= µ1y
2
1 + µ2y

2
2 + · · ·+ µny

2
n. (8.5)

称 Q̃(y1, . . . , yn)为二次型 Q(x1, . . . , xn)的标准型。

定理 8.2.2. 每一个实对称矩阵 A都相合于对角阵。具体来说，存在初等矩阵 P1, P2, . . . , Pr，使得

PT
r PT

r−1 · · ·PT
1 AP1P2 · · ·Pr = diag(µ1, µ2, . . . , µn). (8.6)

这里 µ1, µ2, . . . , µn 为实数。

定理 8.2.3. 设 A为 n阶实对称方阵，则存在正交方阵 P 使得

PTAP = diag(λ1, λ2, . . . , λn),

这里 λ1, λ2, . . . , λn 是 A的特征值。�
笔记请务必熟练掌握二次型的不同求法：

1. 配方法
例 8.2.1. 化三元的二次型 Q(x1, x2, x3) = 2x2

1 + x1x2 + x2
3 为尽量简单的形式。

解：对变量 x1 配方得

Q(x1, x2, x3) = 2

(
x1 +

1

4
x2

)2

− 1

8
x2
2 + x2

3.
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令 
y1 = x1 +

1
4x2

y2 = x2

y3 = x3

或


x1 = y1 − 1

4y2

x2 = y2

x3 = y3

便有
Q̃(y1, y2, y3) = Q(x1, x2, x3)

∣∣
x=Py

= 2y21 −
1

8
y22 + y23 .

用矩阵语言表达就是，矩阵

A =


2 1

2 0
1
2 0 0

0 0 1

 , P =


1 − 1

4 0

0 1 0

0 0 1


做相合变换得到对角阵：

PTAP =


2 0 0

0 − 1
8 0

0 0 1

 .

上述例子中，化简后的二次型 Q̃(y1, y2, y3)没有交叉项。
2. 初等变换法
矩阵施行一个初等行变换，同时要对矩阵作一次相应的列变换，以保证每次变换后得到的矩阵和原矩阵相
合。为了求得变换矩阵 P，须将每次所作的变换保留下来。具体作法是，将单位矩阵放在待变换矩阵 A下
面，构成 2n× n矩阵 (A, I)T，对该矩阵每作一次列变换，同时仅对 A作一次相应的行变换，即(

A

I

)
对 A作成对的初等行列变换 对 I 仅作初等列变换 −→

(
PTAP

P

)
当 PTAP 是对角阵时，I 就成了 P。当然，也可对矩阵 (A, I)实施类似的变换，但对 I 只做行变换。

3. 正交变换法
利用定理 8.2.3.

定理 8.3.1. 设 A是一个 n阶实对称矩阵，则存在可逆矩阵 P 使得

PTAP =


Ip

−Iq
0

 , rank(A) = p+ q ≤ n (8.7)

其中，p是标准形中正项的项数，q是负项的项数。上述右边的对角矩阵称为矩阵 A的规范形。等价地，给定实
二次型 Q(x1, x2, . . . , xn)，存在可逆方阵 P 使得

Q(x1, x2, . . . , xn)
∣∣
x=Py

= y21 + · · ·+ y2p − y2p+1 − · · · − y2p+q. (8.8)

上述称为二次型 Q(x1, x2, . . . , xn)的规范形。

�
笔记注意标准型和规范形的区别。标准型：仅仅需要对角化；规范形：需要对角化 +归一化，保证了唯一性。

定理 8.3.2. 实二次型
Q(x1, . . . , xn) = xTAx

的规范形中正项数 p和负项数 q是由二次型 Q(x1, . . . , xn)唯一确定的，或者说是由实对称矩阵 A唯一确定的。

定理 8.3.2为惯性定理，p为正惯性指数，q为负惯性指数。它们的和就是二次型的秩（即对应的实对称矩阵
A的秩 rank(A) = p+ q）。它们的差 p− q = p− (rank(A)− p) = 2p− rank(A)称为二次型（或矩阵 A）的符号
差。
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二次曲线的分类
1. 椭圆型（λ1λ2 > 0） λ1x̃

2 + λ2ỹ
2 + λ3 = 0.

2. 双曲型（λ1λ2 < 0） λ1x̃
2 + λ2ỹ

2 + λ3 = 0.

3. 抛物形（λ1 6= 0, λ2 = 0, b̃2, c̃中至少一个为零） λ1x̃
2 + 2b̃2ỹ + c̃ = 0.

二次曲面的分类
椭球面型（λ1, λ2, λ3 > 0） λ1x̃

2 + λ2ỹ
2 + λ3z̃

2 + λ4 = 0.

双曲面型（λ1, λ2, λ3 不同号，λ4 6= 0） λ1x̃
2 + λ2ỹ

2 + λ3z̃
2 + λ4 = 0.

二次锥面（λ1, λ2, λ3 不同号） λ1x̃
2 + λ2ỹ

2 + λ3z̃
2 = 0.

抛物型（λ1, λ2, λ3 中有两个非零，一个为零，b̃3 6= 0） λ1x̃
2 + λ2ỹ

2 + 2b̃3z̃ = 0.

二次柱面（λ1, λ2, λ3 中至少一个为零，b̃2, c̃至少有一为零） λ1x̃
2 + λ2ỹ

2 + 2b̃2ỹ + c̃ = 0.�
笔记请务必熟记上述分类。

定义 8.5.1. n元实二次型

Q(x1, x2, . . . , xn) =

n∑
i,j=1

aijxixj = xTAx

称为是正定二次型，如果对任意非零向量 x ∈ Rn，

Q(x1, x2, . . . , xn) > 0.

正定的二次型对应的矩阵 A称为正定矩阵。矩阵 A正定简记为 A > 0。

定理 8.5.1. n元实二次型
Q(x1, x2, . . . , xn) = xTAx

正定的充要条件是，Q的正惯性指数为 n。等价地，实对称矩阵 A正定的充要条件是 A相合于单位阵。

定理 8.5.2. 设 A为 n阶实对称方阵。
1. 设 P 为 n阶实可逆方阵，B = PTAP。则 B > 0当且仅当 A > 0。
2. 设 A = diag(λ1, λ2, . . . , λn)，则 A > 0当且仅当 λi > 0, i = 1, 2, . . . , n。
3. 若 A > 0，则 det(A) > 0。

定理 8.5.3. 设 A为 n阶实对称矩阵，则下列命题等价：
1. A正定；
2. A的特征值均为正；
3. 存在可逆方阵 P 使得 A = PTP；
4. A的各阶顺序主子式均为正，即

a11 > 0,

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ > 0, . . . ,

∣∣∣∣∣∣∣∣
a11 · · · a1n
...

. . .
...

an1 · · · ann

∣∣∣∣∣∣∣∣ = detA > 0. (8.11)

定义 8.5.2. n元实二次型

Q(x1, x2, . . . , xn) =

n∑
i,j=1

aijxixj = xTAx

称为是半正定二次型，如果对任意向量 x ∈ Rn，

Q(x1, x2, . . . , xn) ≥ 0.

半正定的二次型对应的矩阵 A称为半正定矩阵。矩阵 A半正，简记为 A ≥ 0。
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定理 8.5.4. n元实二次型
Q(x1, x2, . . . , xn) = xTAx

半正定的充要条件是，Q的负惯性指数为 0。等价地，实对称方阵 A半正定的充要条件是 A相合于 diag(Ir, 0)，
这里 r是矩阵 A的秩。

定理 8.5.5. 设 A为 n阶实对称方阵。
1. 设 P 为 n阶实可逆方阵，B = PTAP，则 B ≥ 0当且仅当 A ≥ 0。
2. 设 A = diag(λ1, λ2, . . . , λn)，则 A ≥ 0当且仅当 λi ≥ 0, i = 1, 2, . . . , n。
3. 若 A ≥ 0，则 det(A) ≥ 0。

定理 8.5.6. 设 A为 n阶实对称矩阵，则下列命题等价：
1. A半正定；
2. A的特征值均为非负；
3. 存在实方阵 P 使得 A = PTP；
4. A的各阶主子式均为非负。

除了正定与半正定二次型（矩阵），还可以定义负定、半负定二次型（矩阵）。简单来说，Q(x)负定当且仅
当 −Q(x)正定；Q(x)半负定当且仅当 −Q(x)半正定。
因此，负定与半负定二次型（矩阵）都可以归为正定与半正定处理。总结起来，对于 n 个变量的二次型

Q(x1, x2, . . . , xn) = xTAx，它可以分为以下几类：
1. 正定二次型：r = n；
2. 半正定二次型：s = 0, r ≤ n，其规范形为

y21 + y22 + · · ·+ y2r , r ≤ n

或者说对任意的变量 x1, . . . , xn，Q(x1, . . . , xn) ≥ 0。半正定二次型的矩阵称为半正定矩阵，简记为A ≥ 0。
半正定矩阵相合于对角矩阵 J = diag(Ir, 0)。

3. 负定二次型：r = 0, s = n，其规范形为

−y21 − y22 − · · · − y2n

或者说对任意不全为零的 x1, . . . , xn，有 Q(x1, . . . , xn) < 0。负定二次型的矩阵称为负定矩阵，简记为
A < 0，它相合于负的单位矩阵。

4. 半负定二次型：r = 0, s ≤ n，其规范形为

−y21 − y22 − · · · − y2s , s ≤ n

或者说对任意的 x1, . . . , xn 有 Q(x1, . . . , xn) ≤ 0。半负定二次型的矩阵称为半负定矩阵，简记为 A ≤ 0，
它相合于对角矩阵 diag(−Is, 0)。

5. 不定型：除上述 4类外，其他实二次型都称为不定型。

定理 8.5.7.（矩阵的奇异值分解）设 A ∈ Rm×n，则存在m阶正交阵 U 及 n阶正交阵 V 使得

A = U

(
Λ 0

0 0

)
V, 其中Λ = diag(σ1, σ2, . . . , σr), σ1 ≥ σ2 ≥ · · · ≥ σr > 0

称为矩阵 A的奇异值。�
笔记考虑到期中的出卷风格，最好看一下奇异值分解的证明。

115


	1 第一次习题课
	1.1 作业题
	1.2 补充练习

	2 第二次习题课
	2.1 作业题
	2.2 补充练习

	3 第三次习题课
	3.1 作业题
	3.2 补充练习

	4 第四次习题课
	4.1 作业题
	4.2 补充练习
	4.3 2023期中

	5 第五次习题课
	5.1 作业题
	5.2 期中复习
	5.2.1 复习提纲
	5.2.1.1 第一章  向量
	5.2.1.2 第二章  线性方程组
	5.2.1.3 第三章  行列式
	5.2.1.4 第四章 矩阵
	5.2.1.5 第五章  线性空间
	5.2.1.6 总体梳理



	6 第六次习题课
	6.1 习题解答
	6.2 补充题

	7 第七次习题课
	7.1 习题解答
	7.2 补充题

	8 第八次习题课
	8.1 习题解答
	8.2 补充题
	8.2.1 一般线性空间的Schimidt正交化
	8.2.2 三维正交变换的几何性质


	9 第九次习题课
	9.1 习题解答
	9.2 期末补充习题
	9.3 期末复习


